已知数列 $\left\{ {a_n} \right\}$ 与 $\left\{ {b_n} \right\}$ 满足:${b_n}{a_n} + {a_{n + 1}} + {b_{n + 1}}{a_{n + 2}} = 0$,${b_n} = \dfrac{{3 + {{\left( - 1\right)}^n}}}{2}$,$n \in {{\mathbb{N}}^ * }$,且 ${a_1} = 2$,${a_2} = 4$.
【难度】
【出处】
无
【标注】
-
求 ${a_3}$,${a_4}$,${a_5}$ 的值;标注答案解析由 $ b_n = \dfrac{3 + \left( - 1\right)^n }{2},n \in {\mathbb{N}}^* $,可得\[b_n = \begin{cases}
1, n 为奇数, \\
2, n 为偶数. \\
\end{cases} \]又 $ b_n a_n + a_{n + 1} + b_{n + 1} a_{n + 2} = 0 $,
当 $ n = 1 $ 时,\[ a_1 + a_2 + 2a_3 = 0, \]由 $ a_1 = 2 $,$ a_2 = 4 $,可得\[ a_3 = - 3; \]当 $ n = 2 $ 时,\[ 2a_2 + a_3 + a_4 = 0, \]可得\[ a_4 = - 5; \]当 $ n = 3 $ 时,\[ a_3 + a_4 + 2a_5 = 0 ,\]可得\[ a_5 = 4. \] -
设 ${c_n} = {a_{2n - 1}} + {a_{2n + 1}}$,$n \in {{\mathbb{N}}^ * }$,证明:$\left\{ {c_n} \right\}$ 是等比数列;标注答案解析对任意 $ n \in {\mathbb{N}}^* $,\[\begin{split}a_{2n - 1} + a_{2n} + 2a_{2n + 1} = 0, &\quad \cdots \cdots ① \\
2a_{2n} + a_{2n + 1} + a_{2n + 2} = 0, &\quad \cdots \cdots ② \\
a_{2n + 1} + a_{2n + 2} + 2a_{2n + 3} = 0,&\quad \cdots \cdots ③ \end{split}\]② $- $ ③,得\[ a_{2n} = a_{2n + 3} . \quad \cdots \cdots ④ \]将 ④ 代入 ①,可得\[ a_{2n + 1} + a_{2n + 3} = - \left(a_{2n - 1} + a_{2n + 1} \right),\]即\[ c_{n + 1} = - c_n \left(n \in {\mathbb{N}}^* \right) .\]又 $ c_1 = a_1 + a_3 = - 1 $,故 $ c_n \ne 0 $,因此\[ \frac{{c_{n + 1} }}{c_n } = - 1, \]所以 $ \left\{ c_n \right\} $ 是等比数列. -
设 ${S_k} = {a_2} + {a_4} + \cdots + {a_{2k}}$,$k \in {{\mathbb{N}}^ * }$,证明:$\displaystyle \sum\limits_{k = 1}^{4n} {\dfrac{S_k}{a_k} < \dfrac{7}{6}\left(n \in {{\mathbb{N}}^ * }\right)} $.标注答案解析由(2)可得\[ a_{2k - 1} + a_{2k + 1} = \left( - 1\right)^k , \]于是,对任意 $ k \in{\mathbb{ N}}^* $ 且 $ k \geqslant 2 $,有\[\begin{split}
a_1 + a_3 = - 1, \\
- \left(a_3 + a_5 \right) = - 1, \\
a_5 + a_7 = - 1, \\
\vdots \\
\left( - 1\right)^k \left(a_{2k - 3} + a_{2k - 1} \right) = - 1. \\
\end{split} \]将以上各式相加,得\[ a_1 + \left( - 1\right)^k a_{2k - 1} = - \left(k - 1\right), \]即\[ a_{2k - 1} = \left( - 1\right)^{k + 1} \left(k + 1\right), \]此式当 $ k=1 $ 时也成立.由 ④ 式得\[ a_{2k} = \left( - 1\right)^{k + 1} \left(k + 3\right). \]从而\[ \begin{split}S_{2k} & = \left(a_2 + a_4 \right) + \left(a_6 + a_8 \right) + \cdots + \left(a_{4k - 2} + a_{4k} \right) = - k,\\
S_{2k - 1} &= S_{2k} - a_{4k} = k + 3.\end{split} \]所以,对任意 $ n \in {\mathbb{N}}^* $,$ n \geqslant 2 $,\[\begin{split} \sum\limits_{k = 1}^{4n} \frac{S_k }{a_k } & = \sum\limits_{m = 1}^n {\left(\frac{{S_{4m - 3} }}{{a_{4m - 3} }} + \frac{{S_{4m - 2} }}{{a_{4m - 2} }} + \frac{{S_{4m - 1} }}{{a_{4m - 1} }} + \frac{{S_{4m} }}
{{a_{4m} }}\right)} \\&
= \sum\limits_{m = 1}^n {\left(\frac{2m + 2}{2m} - \frac{2m - 1}{2m + 2} - \frac{2m + 3}{2m + 1} + \frac{2m}{2m + 3}\right)} \\&
= \sum\limits_{m = 1}^n {\left(\frac{2}{2m\left(2m + 1\right)} + \frac{3}{\left(2m + 2\right)\left(2m + 3\right)}\right)} \\&
= \frac{2}{2 \times 3} + \sum\limits_{m = 2}^n {\frac{5}{2m\left(2m + 1\right)} + \frac{3}{\left(2n + 2\right)\left(2n + 3\right)}} \\&
< \frac{1}{3} + \sum\limits_{m = 2}^n {\frac{5}{\left(2m - 1\right)\left(2m + 1\right)} + \frac{3}{\left(2n + 2\right)\left(2n + 3\right)}} \\&
= \frac{1}{3} + \frac{5}{2} \cdot \left[\left(\frac{1}{3} - \frac{1}{5}\right) + \left(\frac{1}{5} - \frac{1}{7}\right) + \cdots + \left(\frac{1}{2n - 1} - \frac{1}{2n + 1}\right)\right] + \frac{3}{\left(2n + 2\right)\left(2n + 3\right)}
\\& = \frac{1}{3} + \frac{5}{6} - \frac{5}{2} \cdot \frac{1}{2n + 1} + \frac{3}{\left(2n + 2\right)\left(2n + 3\right)}
\\& < \frac{7}{6}. \end{split}\]对于 $ n=1 $,不等式显然成立.
题目
问题1
答案1
解析1
备注1
问题2
答案2
解析2
备注2
问题3
答案3
解析3
备注3