已知 $a$ 是给定的实常数,设函数 $f\left(x\right) = {\left(x - a\right)^2}\left(x + b\right){{\mathrm{e}}^x}$,$b \in {\mathbb{R}}$,$x = a$ 是 $f\left(x\right)$ 的一个极大值点.
【难度】
【出处】
无
【标注】
-
求 $b$ 的取值范围;标注答案解析由题意得\[f'\left(x\right) = {{\mathrm{e}}^x}\left(x - a\right)\left[{x^2} + \left(3 - a + b\right)x + 2b - ab - a\right],\]令\[g\left(x\right) = {x^2} + \left(3 - a + b\right)x + 2b - ab - a,\]则\[\Delta = {\left(3 - a + b\right)^2} - 4\left(2b - ab - a\right) = {\left(a + b - 1\right)^2} + 8 > 0.\]于是可设 ${x_1}$,${x_2}$ 是 $ g\left(x\right)=0$ 的两实根,且 ${x_1}<{x_2}$,
(i)当 ${x_1} = a$ 或 ${x_2} = a$ 时,则 $x = a$ 不是 $f\left(x\right)$ 的极值点,此时不合题意;
(ii)当 ${x_1} \ne a$ 且 ${x_2} \ne a$ 时,由于 $x = a$ 是 $f\left(x\right)$ 的极大值点,
故\[{x_1} < a < {x_2},\]即\[g\left(a\right) < 0,\]即\[{a^2} + \left(3 - a + b\right)a + 2b - ab - a < 0,\]所以\[b < - a,\]所以 $b$ 的取值范围是 $ \left(-\infty , - a\right)$. -
设 ${x_1}$,${x_2}$,${x_3}$ 是 $f\left(x\right)$ 的 $ 3 $ 个极值点,问是否存在实数 $b$,可找到 ${x_4} \in{\mathbb{ R}}$,使得 ${x_1}$,${x_2}$,${x_3}$,${x_4}$ 的某种排列 ${x_{{i_1}}}$,${x_{{i_2}}}$,${x_{{i_3}}}$,${x_{{i_4}}}$(其中 $\left\{ {{i_1},{i_2},{i_3},{i_4}} \right\} =\left\{ {1,2,3,4} \right\}$)依次成等差数列?若存在,求所有的 $b$ 及相应的 ${x_4}$;若不存在,说明理由.标注答案解析由(1)可知,假设存在 $b$ 及 ${x_4}$ 满足题意,则
(i)当 ${x_2} - a = a - {x_1}$ 时,则\[{x_4} = 2{x_2} - a 或 {x_4} = 2{x_1} - a,\]于是\[2a = {x_1} + x _2 = a - b - 3.\]即\[b = - a - 3.\]此时\[{x_4} = 2{x_2} - a = a - b - 3 + \sqrt {{{\left(a + b - 1\right)}^2} + 8} - a = a + 2\sqrt 6 或 \\ {x_4} = 2{x_1} - a = a - b - 3 - \sqrt {{{\left(a + b - 1\right)}^2} + 8} - a = a - 2\sqrt 6 .\](ii)当 ${x_2} - a \ne a - {x_1}$ 时,则\[{x_2} - a = 2\left(a - {x_1}\right) 或 \left(a - {x_2}\right) = 2\left({x_2} - a\right),\]① 若 ${x_2} - a = 2\left(a - {x_1}\right)$,则\[{x_4} = \dfrac{{a + {x_2}}}{2},\]于是\[3a = 2{x_1} + {x_2} = \dfrac{{3\left(a - b - 3\right) - \sqrt {{{\left(a + b - 1\right)}^2} + 8} }}{2},\]即\[\sqrt {{{\left(a + b - 1\right)}^2} + 8} = - 3\left(a + b + 3\right),\]于是\[a + b - 1 = \dfrac{{ - 9 - \sqrt {13} }}{2},\]此时\[\begin{split}{x_4} &= \dfrac{{a + {x_2}}}{2} = \dfrac{{2a + \left(a - b - 3\right) - 3\left(a + b + 3\right)}}{4}\\& = - b - 3 = a + \dfrac{{1 + \sqrt {13} }}{2}.\end{split}\]② 若 $a - {x_1} = 2\left({x_2} - a\right)$,则\[{x_2} = \dfrac{{a + {x_1}}}{2},\]于是\[3a = 2{x_2} + {x_1} = \dfrac{{3\left(a - b - 3\right) + \sqrt {{{\left(a - b - 1\right)}^2} + 8} }}{2},\]即\[\sqrt {{{\left(a - b - 1\right)}^2} + 8} = 3\left(a + b + 3\right),\]于是\[a + b - 1 = \dfrac{{ - 9 + \sqrt {13} }}{2}.\]此时\[\begin{split}{x_4} &= \dfrac{{a + {x_1}}}{2} = \dfrac{{2a + \left(a - b - 3\right) - 3\left(a + b + 3\right)}}{4} \\&= - b - 3 = a + \dfrac{{1 - \sqrt {13} }}{2}.\end{split}\]综上所述,存在 $b$ 满足题意
当 $b = - a - 3$ 时,${x_4} = a \pm 2\sqrt 6 $;
当 $b = - a - \dfrac{{7 + \sqrt {13} }}{2}$ 时,${x_4} = a + \dfrac{{1 + \sqrt {13} }}{2}$;
当 $b = - a - \dfrac{{7 - \sqrt {13} }}{2}$ 时,${x_4} = a + \dfrac{{1 - \sqrt {13} }}{2}$.
题目
问题1
答案1
解析1
备注1
问题2
答案2
解析2
备注2