设椭圆 $\dfrac{x^2}{a^2} + \dfrac{y^2}{b^2} = 1\left(a > b > 0\right)$ 的左、右焦点分别为 $ F_{1} $,$ F_{2} $.点 $P\left(a,b\right)$ 满足 $|P{F_2}| = |{F_1}{F_2}|.$
【难度】
【出处】
2011年高考天津卷(文)
【标注】
-
求椭圆的离心率 $e$;标注答案解析设 ${F_1}\left( - c,0\right)$,${F_2}\left(c,0\right)\left(c > 0\right)$,因为 $|P{F_2}| = |{F_1}{F_2}|$,
所以\[\sqrt {{{\left(a - c\right)}^2} + {b^2}} = 2c,\]整理得\[2{\left( {\dfrac{c}{a}} \right)^2} + \dfrac{c}{a} - 1 = 0,\]得\[\dfrac{c}{a} = - 1\left(舍\right)\
或 \dfrac{c}{a} = \dfrac{1}{2},\]所以\[e = \dfrac{1}{2}.\] -
设直线 $ PF_{2} $ 与椭圆相交于 $ A $,$ B $ 两点,若直线 $ PF_{2} $ 与圆 ${\left(x + 1\right)^2} + {\left(y - \sqrt 3 \right)^2} = 16$ 相交于 $ M $,$ N $ 两点,且 $|MN| = \dfrac{5}{8}|AB|$,求椭圆的方程.标注答案解析由(1)知 $a = 2c$,$b = \sqrt 3 c$,可得椭圆方程为\[3{x^2} + 4{y^2} = 12{c^2},\]直线 $ PF_{2} $ 的方程为\[y = \sqrt 3 \left(x - c\right).\]$ A $,$ B $ 两点的坐标满足方程组\[\begin{cases}3x^2+4y^2=12c^2,\\y=\sqrt3\left(x-c\right),\end{cases}\]消去 $y$ 并整理,得\[5x^2-8cx=0.\]解得\[{x_1} = 0,{x_2} = \dfrac{8}{5}c,\]得方程组的解\[{\begin{cases}{x_1} = 0, \\
{y_1} = - \sqrt 3 c, \\
\end{cases}}{\begin{cases}{x_2} = \dfrac{8}{5}c, \\
{y_2} = \dfrac{3\sqrt 3 }{5}c. \\
\end{cases}}\]不妨设 $A\left( {\dfrac{8}{5}c,\dfrac{3\sqrt 3 }{5}c} \right)$,$B\left(0, - \sqrt 3 c\right)$,所以\[|AB| = \sqrt {{{\left( {\dfrac{8}{5}c} \right)}^2} + {{\left( {\dfrac{3\sqrt 3 }{5}c + \sqrt 3 c} \right)}^2}} = \dfrac{16}{5}c.\]于是\[|MN| = \dfrac{5}{8}|AB| = 2c.\]圆心 $\left( { - 1,\sqrt 3 } \right)$ 到直线 $ PF_{2} $ 的距离\[d = \dfrac{| - \sqrt 3 - \sqrt 3 - \sqrt 3 c|}{2} = \dfrac{\sqrt 3 |2 + c|}{2}.\]因为 ${d^2} + {\left( {\dfrac{|MN|}{2}} \right)^2} = {4^2}$,所以\[\dfrac{3}{4}{\left(2 + c\right)^2} + {c^2} = 16.\]整理得\[7{c^2} + 12c - 52 = 0,\]得\[c = - \dfrac{26}{7}\left(舍\right) 或 c = 2.\]所以椭圆方程为\[\dfrac{x^2}{16} + \dfrac{y^2}{12} = 1.\]
题目
问题1
答案1
解析1
备注1
问题2
答案2
解析2
备注2