设函数 $f\left( x \right) = \dfrac{{x + m}}{{x + 1}},$ 且存在函数 $s = \varphi \left( t \right) = at + b\left( {t > \dfrac{1}{2},a \ne 0} \right)$,满足 $f\left( {\dfrac{{2t - 1}}{t}} \right) = \dfrac{{2s + 1}}{s}$.
【难度】
【出处】
2010年清华大学等五校合作自主选拔通用基础测试数学试题
【标注】
-
证明:存在函数 $t = \psi \left( s \right) = cs + d\left( {s > 0} \right) ,$ 满足 $f\left( {\dfrac{{2s + 1}}{s}} \right) = \dfrac{{2t - 1}}{t}$;标注答案略解析由题可知\[\begin{split}f\left( {\dfrac{{2t - 1}}{t}} \right) &= \dfrac{{\dfrac{{2t - 1}}{t} + m}}{{\dfrac{{2t - 1}}{t} + 1}} = \dfrac{{2t - 1 + mt}}{{2t - 1 + t}} = \dfrac{{\left( {m + 2} \right)t - 1}}{{3t - 1}},\\\dfrac{{2s + 1}}{s} &= \dfrac{{2\left( {at + b} \right) + 1}}{{at + b}} = \dfrac{{2at + 2b + 1}}{{at + b}},\end{split}\]所以$$\dfrac{{\left( {m + 2} \right)t - 1}}{{3t - 1}} = \dfrac{{2at + 2b + 1}}{{at + b}},$$整理得$$\left[ {\left( {m + 2} \right)t - 1} \right]\left( {at + b} \right) = \left( {3t - 1} \right)\left( {2at + 2b + 1} \right).$$即$$\left( {m + 2} \right)a{t^2} + \left( {bm + 2b - a} \right)t - b = 6a{t^2} + \left( {6b + 3 - 2a} \right)t - \left( {2b + 1} \right),$$而上式对一切 $t > \dfrac{1}{2}$ 恒成立,对比系数必有$$m = 4,a = 3,b = - 1,$$所以$$f\left( x \right) = \dfrac{{x + 4}}{{x + 1}} , s = \varphi \left( t \right) = 3t - 1,$$再结合\[\begin{split}f\left( {\dfrac{{2s + 1}}{s}} \right) &= f\left( {2 + \dfrac{1}{s}} \right) = \dfrac{{2 + \dfrac{1}{s} + 4}}{{2 + \dfrac{1}{s} + 1}} = \dfrac{{6s + 1}}{{3s + 1}},\\ \dfrac{{2t - 1}}{t} &= \dfrac{{2\left( {cs + d} \right) - 1}}{{cs + d}}= \dfrac{{2cs + 2d - 1}}{{cs + d}},\end{split}\]所以$$\dfrac{{6s + 1}}{{3s + 1}} = \dfrac{{2cs + 2d - 1}}{{cs + d}},$$因此$$6c{s^2} + \left( {6d + c} \right)s + d = 6c{s^2} + \left( {6d - 3 + 2c} \right)s + 2d - 1,$$对比系数,有$$c = 3,d = 1,$$所以存在函数 $\psi \left( s \right) = 3s + 1$.
-
设 ${x_1} = 3,{x_{n + 1}} = f\left( {{x_n}} \right),n = 1,2, \cdots $,证明:$\left| {{x_n} - 2} \right| \leqslant \dfrac{1}{{{3^{n - 1}}}}$.标注答案略解析用不动点法,求得$$\dfrac{{{x_n} + 2}}{{{x_n} - 2}} = 5 \cdot {\left( { - 3} \right)^{n - 1}},$$
情形一 当 $n - 1$ 为奇数时,$$\left| {5 \cdot {{\left( { - 3} \right)}^{n - 1}} - 1} \right| = 1 + 5 \cdot {3^{n - 1}} > 4 \cdot {3^{n - 1}},$$情形二 当 $n - 1$ 为偶数时,$$\left| {5 \cdot {{\left( { - 3} \right)}^{n - 1}} - 1} \right| = 5 \cdot {3^{n - 1}} - 1 \geqslant 4 \cdot {3^{n - 1}},$$所以$$\left| {{x_n} - 2} \right| = \left| {\dfrac{4}{{5 \cdot {{\left( { - 3} \right)}^{n - 1}} - 1}}} \right| \leqslant \dfrac{1}{{{3^{n - 1}}}}.$$
题目
问题1
答案1
解析1
备注1
问题2
答案2
解析2
备注2