数列 $\left\{ {{a_n}} \right\}$ 满足:$\dfrac{1}{{{a_1}}} + \dfrac{1}{{{a_2}}} + \cdots + \dfrac{1}{{{a_n}}} = \dfrac{1}{{{a_1}}} \cdot \dfrac{1}{{{a_2}}} \cdots \dfrac{1}{{{a_n}}}$.
【难度】
【出处】
2008年中国科学技术大学自主招生保送生测试
【标注】
-
求 ${a_n}$ 与 ${a_{n + 1}}$ 的关系;标注答案$a_{n+1}=\begin{cases}a_n^2-a_n+1,&n\geqslant2,\\1-a_n,&n=1.\end{cases}$解析由$$\dfrac{1}{{{a_1}}} + \dfrac{1}{{{a_2}}} + \cdots + \dfrac{1}{{{a_n}}} = \dfrac{1}{{{a_1}}} \cdot \dfrac{1}{{{a_2}}} \cdot \cdots \cdot \dfrac{1}{{{a_n}}},$$所以$$\dfrac{1}{{{a_1}}} + \dfrac{1}{{{a_2}}} + \cdots + \dfrac{1}{{{a_n}}} + \dfrac{1}{{{a_{n + 1}}}} = \dfrac{1}{{{a_1}}} \cdot \dfrac{1}{{{a_2}}} \cdot \cdots \cdot \dfrac{1}{{{a_n}}} \cdot \dfrac{1}{{{a_{n + 1}}}},$$两式相减得$$\dfrac{1}{{{a_{n + 1}}}} = \dfrac{1}{{{a_1}}} \cdot \dfrac{1}{{{a_2}}} \cdot \cdots \cdot \dfrac{1}{{{a_n}}}\left( {\dfrac{1}{{{a_{n + 1}}}} - 1} \right),$$即$$1 - {a_{n + 1}} = {a_1}{a_2} \cdots {a_n},$$而$$1 - {a_n} = {a_1}{a_2} \cdots {a_{n - 1}} , n \geqslant 2,$$所以$$1 - {a_{n + 1}} = {a_n}\left( {1 - {a_n}} \right) , n \geqslant 2,$$所以$${a_{n + 1}} = {a_n}^2 - {a_n} + 1 , n \geqslant 2,$$又当 $n = 1$ 时,$${a_2} = 1 - {a_1}.$$综上,$a_{n+1}=\begin{cases}a_n^2-a_n+1,&n\geqslant2,\\1-a_n,&n=1.\end{cases}$
-
若 $0 < {a_1} < 1$,证明:$0 < {a_n} < 1$;标注答案略解析当 $n \geqslant 2$ 时,$$\begin{split}{a_{n + 1}} &= {\left( {{a_n} - \dfrac{1}{2}} \right)^2} + \dfrac{3}{4} > 0,\\{a_{n + 1}} &= 1 - {a_n}\left( {1 - {a_n}} \right) ,\end{split}$$当 $n = 1$ 时,${a_2} = 1 - {a_1}$ $ \in \left({0,1} \right)$,所以可以由数学归纳法证明 $ 0<a_n<1$.
-
若 ${a_1} \notin \left[ {0, 1} \right]$,证明:${a_n} < {a_{n + 1}}(n \geqslant 2)$.标注答案略解析注意到当 $n \geqslant 2$ 时$$\begin{split}{a_{n + 1}} - {a_n} &= {a_n}^2 - 2{a_n} + 1\\ &= {\left( {{a_n} - 1} \right)^2} > 0,\end{split}$$所以当 $n \geqslant 2$ 时,${a_n} < {a_{n + 1}}$.
题目
问题1
答案1
解析1
备注1
问题2
答案2
解析2
备注2
问题3
答案3
解析3
备注3