设关于 $x$ 的方程 $x^{2}-mx-1=0$ 有两个实根 $\alpha,\beta(\alpha<\beta)$,函数 $f(x)=\dfrac{2x-m}{x^{2}+1}$.
【难度】
【出处】
2013年全国高中数学联赛辽宁省预赛
【标注】
  1. 求 $\alpha f(\alpha)+\beta f(\beta)$ 的值;
    标注
    答案
    $2$
    解析
    因为 $\alpha,\beta$ 是方程 $x^{2}-mx-1=0$ 的两个根,所以$$\alpha+\beta=m , \alpha\beta =-1,$$故\[f(\alpha)=\dfrac{2\alpha-m}{\alpha^{2}+1}=\dfrac{2\alpha-(\alpha+\beta)}{\alpha^{2}-\alpha\beta}=\dfrac{\alpha-\beta}{\alpha(\alpha-\beta)}=\dfrac{1}{\alpha},\]即 $\alpha f(\alpha)=1$.
    同理可得 $\beta f(\beta)=1$,所以 $\alpha f(\alpha)+\beta f(\beta)=2$.
  2. 判断 $f(x)$ 在区间 $(\alpha,\beta)$ 的单调性,并加以证明;
    标注
    答案
    单调递增,证明略
    解析
    因为\[f'(x)=-\dfrac{2(x^{2}-mx-1}{(x^{2}+1)^{2}}=-\dfrac{2(x-\alpha)(x-\beta)}{(x^{2}+1)^{2}},\]所以当 $x\in(\alpha,\beta)$ 时,$f'(x)>0$,故 $f(x)$ 在 $(\alpha,\beta)$ 上单调递增.
  3. 若 $\lambda ,\mu$ 均为正实数,证明\[\left|f\left(\dfrac{\lambda \alpha+\mu\beta}{\lambda +\mu}\right)-f\left(\dfrac{\mu\alpha+\lambda \beta}{\lambda+\mu}\right)\right|<|\alpha-\beta|.\]
    标注
    答案
    解析
    因为\[\begin{split}\dfrac{\lambda\alpha+\mu\beta}{\lambda+\mu}-\alpha&=\dfrac{\mu(\beta-\alpha)}{\lambda+\mu}>0,\\\dfrac{\lambda\alpha+\mu\beta}{\lambda+\mu}-\beta&=\dfrac{\lambda(\alpha-\beta)}{\lambda+\mu}<0,\end{split}\]所以$$\alpha<\dfrac{\lambda\alpha+\mu\beta}{\lambda+\mu}<\beta,$$故由 $(2)$ 可知\[f(\alpha)<f\left(\dfrac{\lambda\alpha+\mu\beta}{\lambda+\mu}\right)<f(\beta),\]同理\[f(\alpha)<f\left(\dfrac{\mu\alpha+\lambda\beta}{\lambda+\mu}\right)<f(\beta),\]所以\[\left|f\left(\dfrac{\lambda\alpha+\mu\beta}{\lambda+\mu}\right)-f\left(\dfrac{\mu\alpha+\lambda\beta}{\lambda+\mu}\right)\right|<|f(\alpha)-f(\beta)|.\]由第 $(1)$ 小题可知,$$f(\alpha)=\dfrac{1}{\alpha},f(\beta)=\dfrac{1}{\beta},\alpha\beta=-1,$$所以\[|f(\alpha)-f(\beta)|=\left|\dfrac{1}{\alpha}-\dfrac{1}{\beta}\right|=\left|\dfrac{\beta-\alpha}{\alpha\beta}\right|=|\alpha-\beta|,\]因此\[\left|f\left(\dfrac{\lambda \alpha+\mu\beta}{\lambda +\mu}\right)-f\left(\dfrac{\mu\alpha+\lambda \beta}{\lambda+\mu}\right)\right|<|\alpha-\beta|.\]
题目 问题1 答案1 解析1 备注1 问题2 答案2 解析2 备注2 问题3 答案3 解析3 备注3
0.112957s