过抛物线 $y^{2}=2px(p>0)$ 的对称轴上一点 $A(a,0)(a>0)$ 的直线与抛物线相交于 $M,N$ 两点,自 $M,N$ 向直线 $l:x=-a$ 作垂线,垂足分别为 $M_{1},N_{1}$.记 $\triangle AMM_{1},\triangle AM_{1}N_{1},\triangle ANN_{1}$ 的面积分别为 $S_{1},S_{2},S_{3}$,是否存在 $\lambda$,使得对任意的 $a>0$,都有 $S_{2}^{2}=\lambda S_{1}S_{3}$ 成立.若存在,求出 $\lambda$ 的值;若不存在,说明理由.
【难度】
【出处】
【标注】
【答案】
存在,$\lambda=4$
【解析】
设 $MN:x=my+a$,$M(x_{1},y_{1}$,$N(x_{2},y_{2})$,不妨设 $y_{1}>0>y_{2}$,则\[S_{1}=\dfrac{y_{1}}{2}(x_{1}+a), S_{2}=a(y_{1}-y_{2}), S_{3}=\dfrac{-y_{2}}{2}(x_{2}+a).\]联立直线与抛物线方程,有 $y^{2}-2mpy-2ap=0$,所以\[\begin{split}&y_{1}+y_{2}=2mp, y_{1}y_{2}=-2ap,\\&x_{1}+x_{2}=m(y_{1}+y_{2})+2a=2m^{2}p+2a,\\&x_{1}x_{2}=\dfrac{y_{1}^{2}}{2p}\cdot \dfrac{y_{2}^{2}}{2p}=a^{2}.\end{split}\]所以\[\begin{split}&S_{2}^{2}=4a^{2}p(m^{2}p+2a),\\&S_{1}S_{2}=\dfrac{ap}{2}\left[a^{2}+a\left(2m^{2}p+2a\right)+a^{2}\right]=a^{2}p(m^{2}p+2a).\end{split}\]因此 $\lambda =4$.
另法连接 $M_{1}N,N_{1}M$,如图.因为 $y_{1}y_{2}=-2ap$,所以\[\dfrac{y_{1}}{\dfrac{y_{1}^{2}}{2p}}=-\dfrac{y_{2}}{a},\]于是有 $\dfrac{y_{1}}{x_{1}}=-\dfrac{y_{2}}{a}$,则\[k_{OM}=k_{ON_{1}}.\]所以 $MN_{1}$ 过原点,同理,$M_{1}N$ 也过原点,于是 $\triangle M_{1}OM$ 与 $\triangle NON_{1}$ 相似,于是\[\begin{split}&S_{1}=S_{\triangle MM_{1}O}=\dfrac{MO}{ON_{1}}\cdot S_{\triangle OM_{1}N_{1}}=\dfrac{1}{2}\cdot \dfrac{MO}{ON_{1}}\cdot S_{2},\\& S_{3}=S_{\triangle NN_{1}O}=\dfrac{NO}{OM_{1}}\cdot S_{\triangle OM_{1}N_{1}}=\dfrac{1}{2}\cdot \dfrac{NO}{OM_{1}}\cdot S_{2}.\end{split}\]所以\[\lambda=\dfrac{S_{2}^{2}}{S_{1}S_{3}}=4\cdot \dfrac{OM_{1}}{NO}\cdot \dfrac{ON_{1}}{MO}=4.\]
答案 解析 备注
0.113356s