已知椭圆 $E:\dfrac{x^{2}}{a^{2}}+\dfrac{y^{2}}{b^{2}}=1(a>b>0)$ 的一个焦点为 $F_{1}(-\sqrt 3,0)$,且过点 $H\left(\sqrt 3,\dfrac{1}{2}\right)$.设椭圆 $E$ 的上下顶点分别为 $A_1,A_2$,点 $P$ 是椭圆上异于 $A_1,A_2$ 的任一点,直线 $PA_1,PA_2$ 分别交 $x$ 轴于点 $M,N$,若直线 $OT$ 与过点 $M,N$ 的圆 $G$ 相切,切点为 $T$.证明:线段 $OT$ 的长为定值,并求出该定值.
【难度】
【出处】
2013年全国高中数学联赛甘肃省预赛
【标注】
【答案】
证明略,定值为 $2$
【解析】
由题意得 $a^{2}-b^{2}=3$,$\dfrac{3}{a^{2}}+\dfrac{1}{4b^{2}}=1$,解得 $a^{2}=4$,$b^{2}=1$,所以椭圆 $E$ 的方程为\[\dfrac{x^{2}}{4}+y^{2}=1.(*)\]解法一 由 $(*)$ 知 $A_{1}(0,1)$,$A_{2}(0,-1)$,设 $P(x_{0},y_{0})$.
直线 $PA_{1}:y-1=\dfrac{y_{0}-1}{x_{0}}x$,令 $y=0$,得 $x_{M}=\dfrac{-x_{0}}{y_{0}-1}$;
直线 $PA_{2}:y+1=\dfrac{y_{0}+1}{x_{0}}x$,令 $y=0$,得 $x_{N}=\dfrac{x_{0}}{y_{0}+1}$.
设圆 $G$ 的圆心为 $\left(\dfrac{1}{2}\left(\dfrac{x_{0}}{y_{0}+1}-\dfrac{x_{0}}{y_{0}-1}\right),h\right)$,则\[\begin{split}r^{2}&=\left[\dfrac{1}{2}\left(\dfrac{x_{0}}{y_{0}+1}-\dfrac{x_{0}}{y_{0}-1}\right)-\dfrac{x_{0}}{y_{0}+1}\right]^{2}+h^{2}\\&=\dfrac{1}{4}\left(\dfrac{x_{0}}{y_{0}+1}+\dfrac{x_{0}}{y_{0}-1}\right)^{2}+h^{2}.\\ OG^{2}&=\dfrac{1}{4}\left(\dfrac{x_{0}}{y_{0}+1}-\dfrac{x_{0}}{y_{0}-1}\right)^{2}+h^{2}.\\ OT^{2}&=OG^{2}-r^{2}\\&=\dfrac{1}{4}\left(\dfrac{x_{0}}{y_{0}+1}-\dfrac{x_{0}}{y_{0}-1}\right)^{2}+h^{2}-\dfrac{1}{4}\left(\dfrac{x_{0}}{y_{0}+1}+\dfrac{x_{0}}{y_{0}-1}\right)^{2}-h^{2}\\&=\dfrac{x_{0}^{2}}{1-y_{0}^{2}}.\end{split}\]而 $\dfrac{x_{0}^{2}}{4}+y_{0}^{2}=1$,所以 $x_{0}^{2}=4(1-y_{0}^{2})$,$OT^{2}=\dfrac{4(1-y_{0}^{2}}{1-y_{0}^{2}}=4$.所以 $|OT|=2$,即线段 $OT$ 的长度为定值 $2$.
解法二由 $(*)$ 知 $A_{1}(0,1)$,$A_{2}(0,-1)$,设 $P(x_{0},y_{0})$.
直线 $PA_{1}:y-1=\dfrac{y_{0}-1}{x_{0}}x$,令 $y=0$,得 $x_{M}=\dfrac{-x_{0}}{y_{0}-1}$;
直线 $PA_{2}:y+1=\dfrac{y_{0}+1}{x_{0}}x$,令 $y=0$,得 $x_{N}=\dfrac{x_{0}}{y_{0}+1}$.
因此 $|OM|\cdot|ON|=\left|\dfrac{x_0}{y_0+1}\cdot\dfrac{-x_0}{y_0-1}\right|=\left|\dfrac{x_0^2}{y_0^2-1}\right|$,而 $\dfrac{x_0^2}{4}+y_0^2=1$,所以 $|OM|\cdot|ON|=4$.由切割线定理,得\[OT^2= |OM|\cdot|ON|=4,\]所以 $|OT|=2$.
答案 解析 备注
0.136361s