已知 $S_{n}$ 是数列 $\{a_{n}\}$ 的前 $n$ 项和,且 $4S_{n}=3a_{n}+2^{n+1}(n\geqslant 0,n\in\mathbb Z)$.
【难度】
【出处】
2013年全国高中数学联赛甘肃省预赛
【标注】
  1. 求 $a_{n}$ 与 $a_{n-1}$ 之间的关系式;
    标注
    答案
    $a_{n}=2^{n}-3a_{n-1}(n\in\mathbb N^{*})$
    解析
    $4S_{n}=3a_{n}+2^{n+1}(n\geqslant 0,n\in\mathbb Z)$,$4S_{n-1}=3a_{n-1}+2^{n}(n\in\mathbb N^{*})$.相减得\[4a_{n}=3a_{n}-3a_{n-1}+2^{n},\]所以 $a_{n}=2^{n}-3a_{n-1}(n\in\mathbb N^{*})$.
  2. 求使得数列 $a_{0},a_{1},a_{2},\cdots$ 递增的所有 $a_{0}$ 的取值.
    标注
    答案
    $a_{0}=\dfrac{2}{5}$
    解析
    两侧同除 $2^{n}$ 得 $\dfrac{a_{n}}{2^{n}}=-\dfrac{3}{2}\cdot \dfrac{a_{n-1}}{2^{n-1}}+1$,所以有\[\dfrac{a_{n}}{2^{n}}=\dfrac{2}{5}=-\dfrac{3}{2}\left( \dfrac{a_{n-1}}{2^{n-1}}-\dfrac{2}{5}\right),\]于是有\[\dfrac{a_{n}}{2^{n}}=\dfrac{2}{5}=\left(-\dfrac{3}{2}\right)^{n}\left( \dfrac{a_{0}}{2^{0}}-\dfrac{2}{5}\right),\]所以\[a_{n}=\left[\dfrac{1}{5}+\left(-\dfrac{3}{2}\right)^{n}\left(a_{0}-\dfrac{2}{5}\right)\right]\cdot 2^{n},\]故 $a_{n}=(-3)^{n}\left(a_{0}-\dfrac{2}{5}\right)+2^{n}\cdot \dfrac{2}{5}$.从而\[\begin{split}a_{n+1}-a_{n}&=\left[(-3)^{n+1}\left(a_{0}-\dfrac{2}{5}\right)+2^{n+1}\cdot \dfrac{2}{5}\right]-\left[(-3)^{n}\left(a_{0}-\dfrac{2}{5}\right)+2^{n}\cdot \dfrac{2}{5}\right]\\&=\left(a_{0}-\dfrac{2}{5}\right)\left[(-3)^{n+1}-(-3)^{n}\right]+\dfrac{2}{5}\cdot 2^{n}\\&=\dfrac{2}{5}\cdot 2^{n}\left[\left(-\dfrac{3}{2}\right)^{n}\left(a_{0}-\dfrac{2}{5}\right)+1\right].\end{split}\]若 $a_{0}>\dfrac{2}{5}$,则对充分大的奇数 $n$,$\left(-\dfrac{3}{2}\right)^{n}\left(a_{0}-\dfrac{2}{5}\right)+1<0\Rightarrow a_{n+1}<a_{n}$;
    若 $a_{0}<\dfrac{2}{5}$,则对充分大的偶数 $n$,$\left(-\dfrac{3}{2}\right)^{n}\left(a_{0}-\dfrac{2}{5}\right)+1<0\Rightarrow a_{n+1}<a_{n}$.
    综上,$a_{0}=\dfrac{2}{5}$.
题目 问题1 答案1 解析1 备注1 问题2 答案2 解析2 备注2
0.121087s