已知数列 $\{x_n\}$ 满足 $x_{n+1}=x_n-\ln x_n$,且 $x_1={\rm e}$,求证:$\displaystyle \sum_{k=1}^n\dfrac{x_k-x_{k+1}}{x_k\sqrt{x_k}}<1$.
【难度】
【出处】
无
【标注】
【答案】
略
【解析】
因为 $x-\ln x>1$,所以 $x_n>1$ 恒成立,于是有 $x_{n+1}-x_n=-\ln x_n<0$,所以数列 $\{x_n\}$ 单调递减,且 $x_n>1$.根据题意,有\[\begin{split}\sum_{k=1}^n\dfrac{x_k-x_{k+1}}{x_k\sqrt{x_k}}&<\sum_{k=1}^n\dfrac{x_k-x_{k+1}}{x_k\sqrt{x_{k+1}}}\\
&<\sum_{k=1}^n\dfrac{2(x_k-x_{k+1})}{x_k\sqrt{x_{k+1}}+x_{k+1}\sqrt{x_k}}\\
&=2\sum_{k=1}^n\left(\dfrac{1}{\sqrt{x_{k+1}}}-\dfrac{1}{\sqrt{x_k}}\right)\\
&<2\left(1-\dfrac{1}{\sqrt{\rm e}}\right)<\dfrac 45.\end{split}\]
&<\sum_{k=1}^n\dfrac{2(x_k-x_{k+1})}{x_k\sqrt{x_{k+1}}+x_{k+1}\sqrt{x_k}}\\
&=2\sum_{k=1}^n\left(\dfrac{1}{\sqrt{x_{k+1}}}-\dfrac{1}{\sqrt{x_k}}\right)\\
&<2\left(1-\dfrac{1}{\sqrt{\rm e}}\right)<\dfrac 45.\end{split}\]
答案
解析
备注