定义在 ${\mathbb{R}}$ 上的函数 $f\left( x \right) = \dfrac{{{4^x}}}{{{4^x} + 2}}$,$${S_n} = f\left( {\dfrac{1}{n}} \right) + f\left( {\dfrac{2}{n}} \right) + \cdots + f\left( {\dfrac{{n - 1}}{n}} \right),n = 2,3, \cdots .$$
【难度】
【出处】
2005年复旦大学保送生招生测试
【标注】
  • 知识点
    >
    数列
    >
    数列的求和方法
    >
    数列求和的倒序相加法
  • 题型
    >
    不等式
    >
    级数不等式的证明
  1. 求 ${S_n}$;
    标注
    • 知识点
      >
      数列
      >
      数列的求和方法
      >
      数列求和的倒序相加法
    答案
    ${S_n} = \dfrac{{n - 1}}{2}$
    解析
    注意到\[\begin{split}f\left( x \right) + f\left( {1 - x} \right) &= \dfrac{{{4^x}}}{{{4^x} + 2}} + \dfrac{{{4^{1 - x}}}}{{{4^{1 - x}} + 2}} \\&= \dfrac{{{4^x}}}{{{4^x} + 2}} + \dfrac{4}{{4 + 2 \cdot {4^x}}} = 1.\end{split}\]所以将 $S_n$ 倒序相加得\[\begin{split}2{S_n} &= \left[ {f\left( {\dfrac{1}{n}} \right) + f\left( {\dfrac{{n - 1}}{n}} \right)} \right] + \left[ {f\left( {\dfrac{2}{n}} \right) + f\left( {\dfrac{{n - 2}}{n}} \right)} \right] + \cdots + \left[ {f\left( {\dfrac{{n - 1}}{n}} \right) + f\left( {\dfrac{1}{n}} \right)} \right]\\& = n - 1.\end{split}\]所以 ${S_n} = \dfrac{{n - 1}}{2}$.
  2. 是否存在常数 $M > 0$,$\forall n \geqslant 2$,有$$\dfrac{1}{{{S_2}}} + \dfrac{1}{{{S_3}}} + \cdots + \dfrac{1}{{{S_{n + 1}}}} \leqslant M.$$
    标注
    • 题型
      >
      不等式
      >
      级数不等式的证明
    答案
    解析
    因为$$\dfrac{1}{{{S_2}}} + \dfrac{1}{{{S_3}}} + \cdots + \dfrac{1}{{{S_{n + 1}}}} = \dfrac{2}{1} + \dfrac{2}{2} + \cdots + \dfrac{2}{n},$$构造数列 $\left\{ {{b_n}} \right\}$:$\dfrac{1}{2},\dfrac{1}{4},\dfrac{1}{4},\dfrac{1}{8},\dfrac{1}{8}, \dfrac{1}{8} , \dfrac{1}{8}, \cdots $(其中形如 $\dfrac{1}{{{2^k}}}$ 的项有 ${2^{k - 1}}$ 个)
    截止到最后一个 $\dfrac{1}{{{2^k}}}$,共有$$1 + 2 + {2^2} + \cdots + {2^{k - 1}} = {2^k} - 1$$项.所以取 $n = {2^k}$,则\[\begin{split}\dfrac 12\sum\limits_{k=2}^{n+1}{\dfrac 1{S_{n + 1}}} &= 1 + \dfrac{1}{2} + \dfrac{1}{3} + \cdots + \dfrac{1}{n}\\& = 1 + \dfrac{1}{2} + \dfrac{1}{3} + \cdots + \dfrac{1}{2^{k}}\\& > 1 + \dfrac{1}{2} + \underbrace {\dfrac{1}{4} + \dfrac{1}{4}}_2 + \underbrace {\dfrac{1}{8} + \dfrac{1}{8} + \cdots + \dfrac{1}{8}}_4 + \cdots + \underbrace {\dfrac{1}{{{2^k}}} + \dfrac{1}{{{2^k}}} + \cdots \dfrac{1}{{{2^k}}}}_{{2^{k - 1}}}\\& = 1 + \dfrac{k}{2}.\end{split}\]因此不存在常数 $M > 0$,使得 $\forall n \geqslant 2$,有$$\dfrac{1}{{{S_2}}} + \dfrac{1}{{{S_3}}} + \cdots + \dfrac{1}{{{S_{n + 1}}}} \leqslant M.$$
题目 问题1 答案1 解析1 备注1 问题2 答案2 解析2 备注2
0.107083s