已知 $\dfrac{\cos^3\alpha}{\cos\beta}+\dfrac{\sin^3\alpha}{\sin\beta}=1$,求证:$\left(\dfrac{\cos\beta}{\cos\alpha}-\dfrac{\sin\beta}{\sin\alpha}\right)\left(\dfrac{\cos\beta}{\cos\alpha}+\dfrac{\sin\beta}{\sin\alpha}+1\right)=0$.
【难度】
【出处】
【标注】
  • 题型
    >
    三角
    >
    证明三角恒等式
  • 知识点
    >
    三角
    >
    三角恒等变换
    >
    同角三角函数关系式
【答案】
【解析】
根据已知,有\[\begin{aligned}
\dfrac{\cos^3\alpha}{\cos\beta}-\cos^2\alpha+\dfrac{\sin^3\alpha}{\sin\beta}-\sin^2\alpha=0,\\
\dfrac{\cos^3\alpha}{\cos\beta}-\cos^2\beta+\dfrac{\sin^3\alpha}{\sin\beta}-\sin^2\beta=0,
\end{aligned}\]即\[\begin{aligned}\dfrac{\cos^3\alpha-\cos^2\alpha\cos\beta}{\cos\beta}&=\dfrac{\sin^2\alpha\sin\beta-\sin^3\alpha}{\sin\beta},\\
\dfrac{\cos^3\alpha-\cos^3\beta}{\cos\beta}&=\dfrac{\sin^3\beta-\sin^3\alpha}{\sin\beta}.
\end{aligned}\]不难证明 $\sin\alpha,\cos\alpha\ne 0$,接下来分类讨论.
情形一 $\cos\alpha-\cos\beta=0$ 或 $\sin\beta-\sin\alpha=0$.
此时容易推得 $\cos\alpha=\cos\beta$ 且 $\sin\alpha=\sin\beta$,因此有\[\dfrac{\cos\beta}{\cos\alpha}-\dfrac{\sin\beta}{\sin\alpha}=0,\]原命题成立.
情形二 $\cos\alpha-\cos\beta\ne 0$ 且 $\sin\beta-\sin\alpha\ne 0$.
两式相比,有\[\dfrac{\cos^2\alpha+\cos\alpha\cos\beta+\cos^2\beta}{\cos^2\alpha}=\dfrac{\sin^2\alpha+\sin\alpha\sin\beta+\sin^2\beta}{\sin^2\alpha},\]于是有\[\dfrac{\cos\beta}{\cos\alpha}+\dfrac {\cos^2\beta}{\cos^2\alpha}=\dfrac {\sin\beta}{\sin\alpha}+\dfrac {\sin^2\beta}{\sin^2\alpha},\]移项整理即得.
答案 解析 备注
0.110349s