已知椭圆 $E:\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1\left(a>b>0\right)$ 过点 $\left(0,\sqrt 2\right)$,且离心率 $e=\dfrac{\sqrt 2}2$.
【难度】
【出处】
【标注】
  1. 求椭圆 $E$ 的方程;
    标注
    答案
    $\dfrac{x^2}4+\dfrac{y^2}2=1$.
    解析
    本题考查椭圆的基本量.由题,知 $b=\sqrt2$,$e=\dfrac{c}{a}=\dfrac{\sqrt2}{2}$,再结合 $a^2=b^2+c^2$,解得 $a=2,b=\sqrt2$,因此椭圆 $E$ 的方程为 $\dfrac{x^2}{4}+\dfrac{y^2}{2}=1$.
  2. 设直线 $l:x=my-1\left(m\in{\mathbb{R}}\right)$ 交椭圆 $E$ 于 $A$,$B$ 两点,判断点 $G\left(-\dfrac 94,0\right)$ 与以线段 $AB$ 为直径的圆的位置关系,并说明理由.
    标注
    答案
    点 $G\left(-\dfrac 94,0\right)$ 在以 $AB$ 为直径的圆外.
    解析
    本题考查直线与圆锥曲线的位置关系,可将点与圆的位置关系转化为对应角度的锐直钝问题.解法一:
    设 $A\left(x_1,y_1\right)$,$B\left(x_2,y_2\right)$,$AB$ 的中点为 $H\left(x_0,y_0\right)$.
    联立直线与椭圆方程,得\[\begin{cases}
    x=my-1,\\
    \dfrac{x^2}4+\dfrac{y^2}2=1,
    \end{cases}\]整理得\[\left(m^2+2\right)y^2-2my-3=0,\]所以\[\begin{cases}y_1+y_2=\dfrac{2m}{m^2+2},\\ y_1y_2=-\dfrac 3{m^2+2},\end{cases}\]从而 $y_0=\dfrac m{m^2+2}$.所以\[\begin{split}\left|GH\right|^2&=\left(x_0+\dfrac 94\right)^2+y_0^2\\&=\left(my_0+\dfrac 54\right)^2+y_0^2\\&=\left(m^2+1\right)y_0^2+\dfrac 52my_0+\dfrac{25}{16}.\end{split}\]\[\begin{split}\dfrac{\left|AB\right|^2}4&=\dfrac{\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2}4
    \\&=\dfrac{\left(1+m^2\right)\left(y_1-y_2\right)^2}4
    \\&=\dfrac{\left(1+m^2\right)\left[\left(y_1+y_2\right)^2-4y_1y_2\right]}4
    \\&=\left(1+m^2\right)\left(y_0^2-y_1y_2\right),
    \end{split}\]所以,\[\begin{split}\left|GH\right|^2-\dfrac{\left|AB\right|^2}4&=\dfrac 52my_0+\left(1+m^2\right)y_1y_2+\dfrac{25}{16}\\&=\dfrac{5m^2}{2\left(m^2+2\right)}-\dfrac{3\left(1+m^2\right)}{m^2+2}+\dfrac{25}{16}
    \\&=\dfrac{17m^2+2}{16\left(m^2+2\right)}>0,\end{split}\]所以 $\left|GH\right|>\dfrac{\left|AB\right|}{2}$,
    故点 $G\left(-\dfrac 94,0\right)$ 在以 $AB$ 为直径的圆外.
    解法二:
    设点 $A\left(x_1,y_1\right)$,$B\left(x_2,y_2\right)$,则 $\overrightarrow{GA}=\left(x_1+\dfrac 94,y_1\right)$,$\overrightarrow{GB}=\left(x_2+\dfrac 94,y_2\right)$.
    联立直线与椭圆方程,得\[\begin{cases}
    x=my-1,\\
    \dfrac{x^2}4+\dfrac{y^2}2=1,
    \end{cases}\]整理得\[\left(m^2+2\right)y^2-2my-3=0,\]所以\[\begin{cases}y_1+y_2=\dfrac{2m}{m^2+2},\\ y_1y_2=-\dfrac 3{m^2+2},\end{cases}\]因此,\[\begin{split}\overrightarrow{GA}\cdot\overrightarrow{GB}&\overset{\left[a\right]}=\left(x_1+\dfrac 94\right)\left(x_2+\dfrac 94\right)+y_1y_2
    \\&=\left(my_1+\dfrac 54\right)\left(my_2+\dfrac 54\right)+y_1y_2
    \\&=\left(m^2+1\right)y_1y_2+\dfrac 54m\left(y_1+y_2\right)+\dfrac{25}{16}
    \\&=\dfrac{-3\left(m^2+1\right)}{m^2+2}+\dfrac{\dfrac 52m^2}{m^2+2}+\dfrac{25}{16}
    \\&=\dfrac{17m^2+2}{16\left(m^2+2\right)}>0 ,
    \end{split}\](推导中用到[a])
    所以 $\cos\left\langle \overrightarrow{GA},\overrightarrow{GB}\right\rangle>0$.
    又 $\overrightarrow{GA}$,$\overrightarrow{GB}$ 不共线,所以 $\angle AGB$ 为锐角.
    故点 $G\left(-\dfrac 94,0\right)$ 在以 $AB$ 为直径的圆外.
题目 问题1 答案1 解析1 备注1 问题2 答案2 解析2 备注2
0.121196s