已知函数 $f\left(x\right)=\ln\left(1+x\right)$,$g\left(x\right)=kx\left(k\in{\mathbb{R}}\right)$.
【难度】
【出处】
无
【标注】
-
证明:当 $x>0$ 时,$f\left(x\right)<x$;标注答案略.解析构造新函数,求新函数的最值即可.要证 $f\left(x\right)<x\left(x>0\right)$,即证 $y=f\left(x\right)-x$ 在 $\left(0,+\infty\right)$ 上恒小于 $0$.令\[F\left(x\right)=f\left(x\right)-x=\ln\left(1+x\right)-x , x\in\left[0,+\infty\right) ,\]则有\[F'\left(x\right)=\dfrac 1{1+x}-1=\dfrac{-x}{x+1} .\]当 $x\in\left(0,+\infty\right)$ 时,\[F'\left(x\right)<0 ,\]所以 $F\left(x\right)$ 在 $\left[0,+\infty\right)$ 上单调递减,故当 $x>0$ 时,\[F\left(x\right)<F\left(0\right)=0 ,\]即当 $x>0$ 时,$f\left(x\right)<x$.
-
证明:当 $k<1$ 时,存在 $x_0>0$,使得对任意的 $x\in \left(0,x_0\right)$,恒有 $f\left(x\right)>g\left(x\right)$;标注答案略.解析构造新函数,证明新函数的最小值大于 $0$.要证 $f\left(x\right)>g\left(x\right)$,即证 $y=f\left(x\right)-g\left(x\right)$ 大于 $0$ 在 $\left(0,x_0\right)$ 上恒成立.令\[G\left(x\right)=f\left(x\right)-g\left(x\right)=\ln\left(1+x\right)-kx , x\in\left[0,+\infty\right),\]则有\[G'\left(x\right)=\dfrac 1{x+1}-k=\dfrac{-kx+\left(1-k\right)}{x+1} ,\]当 $k\leqslant 0$ 时,$G'\left(x\right)>0$,故 $G\left(x\right)$ 在 $\left[0,+\infty\right)$ 上单调递增,$G\left(x\right)>G\left(0\right)=0$.
故任意正实数 $x_0$ 均满足题意.
当 $0<k<1$ 时,令\[G'\left(x\right)=0 ,\]得\[x=\dfrac{1-k}k=\dfrac 1k-1>0 .\]取 $x_0=\dfrac 1k-1$,对任意 $x\in\left(0,x_0\right)$,有 $G'\left(x\right)>0$,从而 $G\left(x\right)$ 在 $\left[0,x_0\right)$ 上单调递增,
所以 $G\left(x\right)>G\left(0\right)=0$,即 $f\left(x\right)>g\left(x\right)$.
综上,当 $k<1$ 时,总存在 $x_0>0$,使得对任意 $x\in\left(0,x_0\right)$,恒有 $f\left(x\right)>g\left(x\right)$. -
确定 $k$ 的所有可能取值,使得存在 $t>0$,对任意的 $x\in \left(0,t\right)$,恒有 ${\left|{f\left(x\right)-g\left(x\right)}\right|}<x^2$.标注答案$k=1$.解析转化为研究在 $x=0$ 附近的单调性的问题.解法一:
当 $k>1$ 时,由(1)知,对于 $\forall x\in\left(0,+\infty\right)$,$g\left(x\right)>x>f\left(x\right)$,故 $g\left(x\right)>f\left(x\right)$,\[{\left|{f\left(x\right)-g\left(x\right)}\right|}=g\left(x\right)-f\left(x\right)=kx-\ln\left(1+x\right).\]令\[M\left(x\right)=kx-\ln\left(1+x\right)-x^2 , x\in\left[0,+\infty\right) ,\]则有\[M'\left(x\right)=k-\dfrac 1{1+x}-2x=\dfrac{-2x^2+\left(k-2\right)x+k-1}{x+1}.\]故当 $x\in\left(0,\dfrac{k-2+\sqrt{\left(k-2\right)^2+8\left(k-1\right)}}{4}\right)$ 时,$M'\left(x\right)>0$,$M\left(x\right)$ 在 $\left[0,\dfrac{k-2+\sqrt{\left(k-2\right)^2+8\left(k-1\right)}}{4}\right)$ 上单调递增,故\[M\left(x\right)>M\left(0\right)=0 ,\]即 ${\left|{f\left(x\right)-g\left(x\right)}\right|}>x^2$,所以满足题意的 $t$ 不存在.
当 $k<1$ 时,由(2)知,存在 $x_0>0$,使得当 $x\in \left(0,x_0\right)$ 时,$f\left(x\right)>g\left(x\right)$,
此时\[{\left|{f\left(x\right)-g\left(x\right)}\right|}=f\left(x\right)-g\left(x\right)=\ln\left(1+x\right)-kx .\]令\[N\left(x\right)=\ln\left(1+x\right)-kx-x^2 , x\in\left[0,+\infty\right),\]则有\[N'\left(x\right)=\dfrac{1}{x+1}-k-2x=\dfrac{-2x^2-\left(k+2\right)x+1-k}{x+1} ,\]当 $x\in\left(0,\dfrac{-\left(k+2\right)+\sqrt{\left(k+2\right)^2+8\left(1-k\right)}}{4}\right)$ 时,$N'\left(x\right)>0$,$N\left(x\right)$ 在 $\left[0,\dfrac{-\left(k+2\right)+\sqrt{\left(k+2\right)^2+8\left(1-k\right)}}{4}\right]$ 上单调递增,故 $N\left(x\right)>N\left(0\right)=0$,即 $f\left(x\right)-g\left(x\right)>x^2$.
记 $x_0$ 与 $\dfrac{-\left(k+2\right)+\sqrt{\left(k+2\right)^2+8\left(1-k\right)}}{4}$ 中的较小者为 $x_1$,则当 $x\in\left(0,x_1\right)$ 时,恒有 ${\left|{f\left(x\right)-g\left(x\right)}\right|}>x^2$.故满足题意的 $t$ 不存在.
当 $k=1$ 时,由(1)知,当 $x>0$ 时,\[{\left|{f\left(x\right)-g\left(x\right)}\right|}=g\left(x\right)-f\left(x\right)=x-\ln\left(1+x\right) .\]令\[H\left(x\right)=x-\ln\left(1+x\right)-x^2 , x\in\left[0,+\infty\right) ,\]则有\[H'\left(x\right)=1-\dfrac 1{1+x}-2x=\dfrac{-2x^2-x}{x+1} .\]当 $x>0$ 时,$H'\left(x\right)<0$,所以 $H\left(x\right)$ 在 $\left[0,+\infty\right)$ 上单调递减,故 $H\left(x\right)<H\left(0\right)=0$.
故当 $x>0$ 时,恒有 ${\left|{f\left(x\right)-g\left(x\right)}\right|}<x^2$.
此时,任意正实数 $t$ 均满足题意.
综上,$k=1$.
解法二:
当 $k>1$ 时,由(1)知,对于 $\forall x\in\left(0,+\infty\right)$,$g\left(x\right)>x>f\left(x\right)$,
故\[{\left|{f\left(x\right)-g\left(x\right)}\right|}=g\left(x\right)-f\left(x\right)=kx-\ln\left(1+x\right)>kx-x=\left(k-1\right)x ,\]令\[\left(k-1\right)x>x^2 ,\]解得 $0<x<k-1$.
从而得到,当 $k>1$ 时,对于 $x\in\left(0,k-1\right)$,恒有\[{\left|{f\left(x\right)-g\left(x\right)}\right|}>x^2 ,\]故满足题意的 $t$ 不存在.
当 $k<1$ 时,取 $k_1=\dfrac{k+1}2$,从而 $k<k_1<1$,
由(2)知,存在 $x_0>0$,使得 $x\in\left(0,x_0\right)$,\[f\left(x\right)>k_1x>kx=g\left(x\right) ,\]此时\[{\left|{f\left(x\right)-g\left(x\right)}\right|}=f\left(x\right)-g\left(x\right)>\left(k_1-k\right)x=\dfrac{1-k}2x .\]令\[\dfrac{1-k}2x>x^2 ,\]解得 $0<x<\dfrac{1-k}2$,此时\[f\left(x\right)-g\left(x\right)>x^2 .\]记 $x_0$ 与 $\dfrac{1-k}2$ 中的较小者为 $x_1$,当 $x\in\left(0,x_1\right)$ 时,恒有 ${\left|{f\left(x\right)-g\left(x\right)}\right|}>x^2$,
故满足题意的 $t$ 不存在.
当 $k=1$ 时,由(1)知,$x>0$,\[{\left|{f\left(x\right)-g\left(x\right)}\right|}=f\left(x\right)-g\left(x\right)=x-\ln\left(1+x\right) ,\]令\[M\left(x\right)=x-\ln\left(1+x\right)-x^2 , x\in\left[0,+\infty\right),\]则有\[M'\left(x\right)=1-\dfrac 1{1+x}-2x=\dfrac{-2x^2-x}{x+1}.\]当 $x>0$ 时,$M'\left(x\right)<0$,
所以 $M\left(x\right)$ 在 $\left[0,+\infty\right)$ 上单调递减,故 $M\left(x\right)<M\left(0\right)=0$.
故当 $x>0$ 时,恒有 ${\left|{f\left(x\right)-g\left(x\right)}\right|}<x^2$,此时,任意正实数 $t$ 均满足题意.
综上,$k=1$.
题目
问题1
答案1
解析1
备注1
问题2
答案2
解析2
备注2
问题3
答案3
解析3
备注3