设 $a_1$,$a_2$,$a_3$,$a_4$ 是各项为正数且公差为 $d\left(d\neq 0\right)$ 的等差数列.
【难度】
【出处】
【标注】
  1. 证明:$2^{a_1}$,$2^{a_2}$,$2^{a_3}$,$2^{a_4}$ 依次构成等比数列;
    标注
    答案
    略.
    解析
    用这四项的后一项比前一项,如果能得到常数,则可证明它是等比数列.因为 $\dfrac{2^{a_{n+1}}}{2^{a_n}}=2^{a_{n+1}-a_n}=2^d$($n=1,2,3$)是同一个常数,
    所以 $2^{a_1}$,$2^{a_2}$,$2^{a_3}$,$2^{a_4}$ 依次构成等比数列.
  2. 是否存在 $a_1$,$d$,使得 $a_1$,$a_2^2$,$a_3^3$,$a_4^4$ 依次构成等比数列?并说明理由;
    标注
    答案
    不存在.理由略.
    解析
    可设 $a_2=a$,将 $a_1,a_2,a_3,a_4$ 分别用 $a$ 和 $d$ 表示,然后假设 $a_1$,$a_2^2$,$a_3^3$,$a_4^4$ 依次构成等比数列的,于是得到关于 $a,d$ 的两个方程,化齐次解出 $\dfrac da$,从而推出矛盾.不存在.理由如下:
    令 $a_1+d=a$,则 ${a_1}$,${a_2}$,${a_3}$,${a_4}$ 分别为 $a-d$,$a$,$a+d$,$a+2d$($a>d$,$a>-2d$,$d\neq 0$).
    假设存在 $a_1$,$d$,使得 ${a_1}$,${a_2^2}$,${a_3^3}$,${a_4^4}$ 依次构成等比数列,则 $a^4=\left(a-d\right)\left(a+d\right)^3$,且 $\left(a+d\right)^6=a^2\left(a+2d\right)^4$.
    令 $t=\dfrac da$,则 $1=\left(1-t\right)\left(1+t\right)^3$,且 $\left(1+t\right)^6=\left(1+2t\right)^4\left(-\dfrac 12<t<1,t\neq 0\right)$,化简得 $t^3+2t^2-2=0, \quad \cdots \cdots ① $
    且 $t^2=t+1$.
    将 $t^2=t+1$ 代入 $ ① $ 式,得 $t\left(t+1\right)+2\left(t+1\right)-2=t^2+3t=t+1+3t=4t+1=0$,则 $t=-\dfrac 14$.
    显然 $t=-\dfrac 14$ 不是上面方程的解,矛盾,所以假设不成立,
    因此不存在 $a_1$,$d$,使得 ${a_1}$,${a_2^2}$,${a_3^3}$,${a_4^4}$ 依次构成等比数列.
  3. 是否存在 $a_1$,$d$ 及正整数 $n$,$k$,使得 $a_1^n$,$a_2^{n+k}$,$a_3^{n+2k}$,$a_4^{n+3k}$ 依次构成等比数列?并说明理由.
    标注
    答案
    不存在,理由略.
    解析
    首先将 $a_1,a_2,a_3,a_4$ 用 $a_1,d$ 表示,然后假设 $a_1^n$,$a_2^{n+k}$,$a_3^{n+2k}$,$a_4^{n+3k}$ 依次构成等比数列,于是得到关于 $a_1,d$ 的两个方程,齐次化得到关于 $\dfrac d{a_1}$ 的两个方程,可通过导数研究得出方程的解,通过解的不合理推出矛盾.不存在,理由如下:
    假设存在 $a_1$,$d$ 及正整数 $n$,$k$,使得 $a_1^n$,$a_2^{n+k}$,$a_3^{n+2k}$,$a_4^{n+3k}$ 依次构成等比数列,则 $a_1^n\left(a_1+2d\right)^{n+2k}=\left(a_1+d\right)^{2\left(n+k\right)}$,且 $\left(a_1+d\right)^{n+k}\left(a_1+3d\right)^{n+3k}=\left(a_1+2d\right)^{2\left(n+2k\right)}$,分别在两个等式的两边同除以 $a_1^{2\left(n+k\right)}$ 及 $a_1^{2\left(n+2k\right)}$,并令 $t=\dfrac{d}{a_1}$($t>-\dfrac 13$,$t\neq 0$),
    则 $\left(1+2t\right)^{n+2k}=\left(1+t\right)^{2\left(n+k\right)}$,且 $\left(1+t\right)^{n+k}\left(1+3t\right)^{n+3k}=\left(1+2t\right)^{2\left(n+2k\right)}$.
    将上述两个等式两边取对数,得 $\left(n+2k\right)\ln\left(1+2t\right)=2\left(n+k\right)\ln\left(1+t\right)$,且 $\left(n+k\right)\ln\left(1+t\right)+\left(n+3k\right)\ln\left(1+3t\right)=2\left(n+2k\right)\ln\left(1+2t\right)$.
    化简得 $2k\left[\ln\left(1+2t\right)-\ln\left(1+t\right)\right]=n\left[2\ln\left(1+t\right)-\ln\left(1+2t\right)\right]$,且 $3k\left[\ln\left(1+3t\right)-\ln\left(1+t\right)\right]=n\left[3\ln\left(1+t\right)-\ln\left(1+3t\right)\right]$.
    再将这两式相除,化简得 $\ln\left(1+3t\right)\ln\left(1+2t\right)+3\ln\left(1+2t\right)\ln\left(1+t\right)
    =4\ln\left(1+3t\right)\ln\left(1+t\right). \quad \cdots \cdots ② $
    令 $g\left(t\right)=4\ln\left(1+3t\right)\ln\left(1+t\right)-\ln\left(1+3t\right)\ln\left(1+2t\right)-3\ln\left(1+2t\right)\ln\left(1+t\right)$,则 $g'\left(t\right)=
    \dfrac{2\left[\left(1+3t\right)^2\ln\left(1+3t\right)-3\left(1+2t\right)^2\ln\left(1+2t\right)+3\left(1+t\right)^2\ln\left(1+t\right)\right]}{\left(1+t\right)\left(1+2t\right)\left(1+3t\right)}$.
    令 $\varphi\left(t\right)=\left(1+3t\right)^2\ln\left(1+3t\right)-3\left(1+2t\right)^2\ln\left(1+2t\right)+3\left(1+t\right)^2\ln\left(1+t\right)$,
    则 $\varphi'\left(t\right)=6\left[\left(1+3t\right)\ln\left(1+3t\right)-2\left(1+2t\right)\ln\left(1+2t\right)+\left(1+t\right)\ln\left(1+t\right)\right]$,
    令 $\varphi_1\left(t\right)=\varphi'\left(t\right)$,则 $\varphi_1'\left(t\right)=6\left[3\ln\left(1+3t\right)-4\ln\left(1+2t\right)+\ln\left(1+t\right)\right]$,
    令 $\varphi_2\left(t\right)=\varphi_1'\left(t\right)$,则 $\varphi_2'\left(t\right)=\dfrac{12}{\left(1+t\right)\left(1+2t\right)\left(1+3t\right)}>0$.
    由 $ g\left(0\right)=\varphi\left(0\right)=\varphi_1\left(0\right)=\varphi_2\left(0\right)=0 $,$ \varphi_2'\left(t\right)>0 $,
    知 $ \varphi_2\left(t\right) $,$ \varphi_1\left(t\right) $,$ \varphi\left(t\right) $,$ g\left(t\right) $ 在 $ \left(-\dfrac 13,0\right) $ 和 $ \left(0,+\infty\right) $ 上均单调.
    故 $ g\left(t\right) $ 只有唯一零点 $ t=0 $,即方程 $ ② $ 只有唯一解 $ t=0 $,故假设不成立.
    所以不存在 $ a_1 $,$ d $ 及正整数 $ n $,$ k $,使得 $ a_1^n $,$ a_2^{n+k} $,$ a_3^{n+2k} $,$ a_4^{n+3k} $ 依次构成等比数列.
题目 问题1 答案1 解析1 备注1 问题2 答案2 解析2 备注2 问题3 答案3 解析3 备注3
0.186621s