已知集合 $X=\left\{1,2,3\right\}$,$Y_n=\left\{1,2,3,\cdots,n\right\}$($n\in{\mathbb{N}}^*$),设 $S_n=\left\{\left(a,b\right) \left|\right. a整除b或b整除a,a\in X,b\in Y_n\right\}$,令 $f\left(n\right)$ 表示集合 $S_n$ 所含元素的个数.
【难度】
【出处】
2015年高考江苏卷
【标注】
-
写出 $f\left(6\right)$ 的值;标注答案$ f\left(6\right)=13 $.解析当 $n=6$ 时,可组出的数对有 $3\times 6=18$ 个,依次筛选出符合题意的数对,继而得到 $f(6)$.$ Y_6=\left\{1,2,3,4,5,6\right\} $,$ S_6 $ 中的元素$ \left(a,b\right) $ 满足:
若 $ a=1 $,则 $ b=1,2,3,4,5,6 $;若 $ a=2 $,则 $ b=1,2,4,6 $;若 $ a=3 $,则 $ b=1,3,6 $.
所以 $ f\left(6\right)=13 $. -
当 $n\geqslant 6$ 时,写出 $f\left(n\right)$ 的表达式,并用数学归纳法证明.标注答案当 $ n\geqslant 6 $ 时,
$ f\left(n\right)=\begin{cases}
n+2+\left(\dfrac{n}{2}+\dfrac{n}{3}\right),&n=6t,\\
n+2+\left(\dfrac{n-1}{2}+\dfrac{n-1}{3}\right),&n=6t+1,\\
n+2+\left(\dfrac{n}{2}+\dfrac{n-2}{3}\right),&n=6t+2,\\
n+2+\left(\dfrac{n-1}{2}+\dfrac{n}{3}\right),&n=6t+3,\\
n+2+\left(\dfrac{n}{2}+\dfrac{n-1}{3}\right),&n=6t+4,\\
n+2+\left(\dfrac{n-1}{2}+\dfrac{n-2}{3}\right),&n=6t+5,\\
\end{cases}\left(t\in\mathbb N^*\right) $.解析依次分析 $a=1,2,3$ 时的情况,并按 $n=6t,6t+1,\cdots,6t+5$ 六种情况分别进行讨论.组成 $S_n$的元素分三种:
① $a=1$ 时,$b$ 可以是 $Y_n=\left\{1,2,3,\cdots,n\right\}$ 中的任意一个数,此时符合题意的数对 $\left(a,b\right)$ 有 $n$ 个;
② $a=2$ 时,$b$ 需能被 $2$ 整除或能整除 $2$,所以 $b=1,2,4,\cdots$.此时符合题意的数对个数为\[\begin{cases}\dfrac n2+1,&n=6t\\ \dfrac {n-1}2+1,&n=6t+1\\ \dfrac n2+1,&n=6t+2\\ \dfrac {n-1}2+1,&n=6t+3\\ \dfrac n2+1,&n=6t+4\\ \dfrac {n-1}2+1,&n=6t+5.\end{cases}\left(t\in \mathbb {N^*}\right).\]③ $a=3$ 时,$b$ 需能被 $3$ 整除或能整除 $3$,所以 $b=1,3,6,\cdots$.此时符合题意的数对个数为\[\begin{cases}\dfrac n3+1,&n=6t\\
\dfrac {n-1}3+1,&n=6t+1\\
\dfrac {n-2}3+1,&n=6t+2\\
\dfrac n3+1,&n=6t+3\\
\dfrac {n-1}3+1,&n=6t+4\\
\dfrac {n-2}3+1,&n=6t+5.\end{cases}\left(t\in \mathbb {N^*}\right).\]所以 $S_n$ 中的个数为这三种情况的和,即当 $ n\geqslant 6 $ 时,\[ f\left(n\right)=\begin{cases}n+2+\left(\dfrac{n}{2}+\dfrac{n}{3}\right),&n=6t,\\
n+2+\left(\dfrac{n-1}{2}+\dfrac{n-1}{3}\right),&n=6t+1,\\
n+2+\left(\dfrac{n}{2}+\dfrac{n-2}{3}\right),&n=6t+2,\\
n+2+\left(\dfrac{n-1}{2}+\dfrac{n}{3}\right),&n=6t+3,\\
n+2+\left(\dfrac{n}{2}+\dfrac{n-1}{3}\right),&n=6t+4,\\
n+2+\left(\dfrac{n-1}{2}+\dfrac{n-2}{3}\right),&n=6t+5,\\
\end{cases}\left(t\in\mathbb N^*\right).\]下面用数学归纳法证明:
① 当 $ n=6 $ 时,$ f\left(6\right)=6+2+\dfrac 62+\dfrac 63=13 $,结论成立.
② 假设 $ n=k\left(k\geqslant 6\right) $ 时结论成立,那么 $ n=k+1 $ 时,$ S_{k+1} $ 在 $ S_k $ 的基础上所增加的元素在 $ \left(1,k+1\right) $,$ \left(2,k+1\right) $,$ \left(3,k+1\right) $ 中产生,分以下情形讨论:
a.若 $k+1=6t $,则 $k=6\left(t-1\right)+5 $,此时有 $f\left(k+1\right)=f\left(k\right)+3=k+2+\dfrac{k-1}{2}+\dfrac{k-2}{3}+3=\left(k+1\right)+2+\dfrac{k+1}{2}+\dfrac{k+1}{3} $,结论成立;
b.若 $k+1=6t+1 $,则 $k=6t $,此时有 $f\left(k+1\right)=f\left(k\right)+1=k+2+\dfrac{k}{2}+\dfrac{k}{3}+1=\left(k+1\right)+2+\dfrac{\left(k+1\right)-1}{2}+\dfrac{\left(k+1\right)-1}{3} $,结论成立;
c.若 $k+1=6t+2$,则 $k=6t+1$,此时有 $f\left(k+1\right)=f\left(k\right)+2=k+2+\dfrac{k-1}{2}+\dfrac{k-1}{3}+2=\left(k+1\right)+2+\dfrac{k+1}{2}+\dfrac{\left(k+1\right)-2}{3}$,结论成立;
d.若 $k+1=6t+3$,则 $k=6t+2$,此时有 $f\left(k+1\right)=f\left(k\right)+2=k+2+\dfrac{k}{2}+\dfrac{k-2}{3}+2=\left(k+1\right)+2+\dfrac{\left(k+1\right)-1}{2}+\dfrac{k+1}{3}$,结论成立;
e.若 $k+1=6t+4$,则 $k=6t+3$,此时有 $f\left(k+1\right)=f\left(k\right)+2=k+2+\dfrac{k-1}{2}+\dfrac{k}{3}+2=\left(k+1\right)+2+\dfrac{k+1}{2}+\dfrac{\left(k+1\right)-1}{3}$,结论成立;
f.若 $k+1=6t+5$,则 $ k=6t+4$,此时有 $f\left(k+1\right)=f\left(k\right)+1=k+2+\dfrac{k}{2}+\dfrac{k-1}{3}+1=\left(k+1\right)+2+\dfrac{\left(k+1\right)-1}{2}+\dfrac{\left(k+1\right)-2}{3}$,结论成立.
综上所述,结论对满足 $n\geqslant 6$ 的自然数 $n$ 均成立.
题目
问题1
答案1
解析1
备注1
问题2
答案2
解析2
备注2