已知正数数列 $\{a_n\}$ 的首项 $a_1=1$.
【难度】
【出处】
无
【标注】
-
若 $a_n=\dfrac 12\left(S_n+\dfrac{1}{S_n}\right)$,求 $\{a_n\}$ 的通项公式;标注答案$a_n=\dfrac{1}{\sin\dfrac{\pi}{2^n}}$解析根据题意有$$2(S_{n+1}-S_n)=S_{n+1}+\dfrac{1}{S_{n+1}},$$于是$$S_n=\dfrac{S_{n+1}^2-1}{2S_{n+1}}.$$联想三角公式$$\cot 2\theta=\dfrac{\cot^2\theta-1}{2\cot \theta},$$于是设$$S_n=\cot \theta_n,\theta_n\in\left(0,\dfrac {\pi}{2}\right),$$则有 $\theta_n=2\theta_{n+1}$.
由于 $S_1=a_1=1$,因此 $\theta_1=\dfrac{\pi}4$,因此$$\theta_n=\dfrac{\pi}{2^{n+1}},$$于是$$a_n=\dfrac{S_n^2+1}{2S_n}=\dfrac{1+\tan^2\theta_n}{2\tan\theta_n}=\dfrac{1}{\sin 2\theta_n}=\dfrac{1}{\sin\dfrac{\pi}{2^n}}.$$ -
若 $a_{n+1}=\sqrt{1+S_n+S_n^2}$,求 $\{a_n\}$ 的通项公式.标注答案$a_n=\dfrac{\sqrt 3}{2\sin{\dfrac{\pi}{3\cdot 2^{n-1}}}}$解析根据题意有$$(S_{n+1}-S_n)^2=1+S_n+S_n^2,$$整理得$$S_n=\dfrac{S_{n+1}^2-1}{2S_{n+1}+1},$$与之前得到的递推公式类似,但需要调整.
首先处理分母,有$$S_n+\dfrac 12=\dfrac{\left(S_{n+1}+\dfrac 12\right)^2-\left(S_{n+1}+\dfrac 12\right)-\dfrac 34}{2\left(S_{n+1}+\dfrac 12\right)}+\dfrac 12=\dfrac{\left(S_{n+1}+\dfrac 12\right)^2-\dfrac 34}{2\left(S_{n+1}+\dfrac 12\right)},$$然后处理分子,有$$\dfrac 2{\sqrt 3}\left(S_n+\dfrac 12\right)=\dfrac{\left[\dfrac 2{\sqrt 3}\left(S_{n+1}+\dfrac 12\right)\right]^2-1}{2\left[\dfrac 2{\sqrt 3}\left(S_{n+1}+\dfrac 12\right)\right]},$$与上一小题类似,设$$\dfrac{2}{\sqrt 3}\left(S_n+\dfrac 12\right)=\cot \theta_n,\theta_n\in\left(0,\dfrac {\pi}{2}\right ),$$则有 $\theta_n=2\theta_{n+1}$.由于 $S_1=a_1=1$,因此 $\theta_1=\dfrac{\pi}6$,因此$$\theta_n=\dfrac{\pi}{3\cdot 2^n},$$于是$$S_n=\dfrac{\sqrt 3}2\cot\theta_n-\dfrac 12,$$从而当 $n\geqslant 2$ 时,有$$a_n=\dfrac{\sqrt 3}2\cdot\left(\dfrac{1}{\tan \theta_n}-\dfrac{1}{\tan 2\theta_n}\right)=\dfrac{\sqrt 3}2\cdot \dfrac{1}{\sin 2\theta_n}=\dfrac{\sqrt 3}{2\sin{\dfrac{\pi}{3\cdot 2^{n-1}}}}.$$
题目
问题1
答案1
解析1
备注1
问题2
答案2
解析2
备注2