求证:$\cos{\dfrac{\pi}{2n+1}}\cos{\dfrac{2\pi}{2n+1}}\cdots\cos{\dfrac{2n\pi}{2n+1}}=\dfrac{(-1)^n}{2^{2n}}$,其中 $n\in \mathbb{N}$.
【难度】
【出处】
无
【标注】
【答案】
略
【解析】
根据题意,有$$\left|\cos{\dfrac{\pi}{2n+1}}\cos{\dfrac{2\pi}{2n+1}}\cdots\cos{\dfrac{2n\pi}{2n+1}}\right|
=\dfrac{1}{2^{2n}}\cdot\left|\dfrac{\sin{\dfrac{2\pi}{2n+1}}\sin{\dfrac{4\pi}{2n+1}}\cdots\sin{\dfrac{4n\pi}{2n+1}}}{\sin{\dfrac{\pi}{2n+1}}\sin{\dfrac{2\pi}{2n+1}}\cdots\sin{\dfrac{2n\pi}{2n+1}}}\right|,$$记 $[m]$ 表示正整数 $m$ 除以 $2n+1$ 所得的余数,则有$$\left\{[1],[2],\cdots,[2n]\right\}=\left\{[2],[4],\cdots,[4n]\right\},$$由以上两式可得$$\left|\cos{\dfrac{\pi}{2n+1}}\cos{\dfrac{2\pi}{2n+1}}\cdots\cos{\dfrac{2n\pi}{2n+1}}\right|=\dfrac{1}{2^{2n}}.$$
=\dfrac{1}{2^{2n}}\cdot\left|\dfrac{\sin{\dfrac{2\pi}{2n+1}}\sin{\dfrac{4\pi}{2n+1}}\cdots\sin{\dfrac{4n\pi}{2n+1}}}{\sin{\dfrac{\pi}{2n+1}}\sin{\dfrac{2\pi}{2n+1}}\cdots\sin{\dfrac{2n\pi}{2n+1}}}\right|,$$记 $[m]$ 表示正整数 $m$ 除以 $2n+1$ 所得的余数,则有$$\left\{[1],[2],\cdots,[2n]\right\}=\left\{[2],[4],\cdots,[4n]\right\},$$由以上两式可得$$\left|\cos{\dfrac{\pi}{2n+1}}\cos{\dfrac{2\pi}{2n+1}}\cdots\cos{\dfrac{2n\pi}{2n+1}}\right|=\dfrac{1}{2^{2n}}.$$
答案
解析
备注