数列 $\{a_n\}$ 满足 $a_1=1$,$na_{n+1}=(n+2)a_n+n$,$b_n=\dfrac{a_n}{n(n+1)}$.
【难度】
【出处】
无
【标注】
-
求 $b_n$ 和 $a_n$;标注答案$b_n=\dfrac{n}{n+1}$,$a_n=n^2$解析根据题意,有\[\dfrac{a_{n+1}}{(n+1)(n+2)}=\dfrac{a_n}{n(n+1)}+\dfrac{1}{(n+1)(n+2)},\]即\[b_{n+1}+\dfrac{1}{n+2}=b_n+\dfrac{1}{n+1},\]进而可得\[b_n+\dfrac{1}{n+1}=b_1+\dfrac{1}{2}=1,\]因此\[b_n=\dfrac{n}{n+1},a_n=n^2.\]
-
求证:$\dfrac n2\leqslant \dfrac{1}{a_2}+\dfrac{1}{a_3}+\cdots+\dfrac{1}{a_{n+1}}+b_1^2+b_2^2+\cdots+b_n^2\leqslant \dfrac{2n^2-4n+4\sqrt n-1}{2n}$.标注答案略解析对于左边不等式,考虑到\[\dfrac 1{a_{k+1}}+b_k^2=\dfrac{1}{(k+1)^2}+\dfrac{k^2}{(k+1)^2}=\dfrac{k^2+1}{(k+1)^2}\geqslant \dfrac 12,\]等号当且仅当 $k=1$ 时取得.取 $k=1,2,\cdots,n$,累加即得左边不等式.
对于右边不等式,即\[n-\sum_{k=1}^{n}\dfrac{k^2+1}{(k+1)^2}\geqslant 2+\dfrac{1}{2n}-\dfrac{2}{\sqrt n},\]也即\[\sum_{k=1}^{n}\dfrac{2k}{(k+1)^2}\geqslant 2+\dfrac{1}{2n}-\dfrac{2}{\sqrt n}.\]考虑到\[\dfrac{2k}{(k+1)^2}=\dfrac{2}{k+\dfrac 1k+2}\geqslant \dfrac{2}{k+3},\]下面证明引理:当 $k\geqslant 2$ 时,有\[\dfrac{2}{k+3}\geqslant \dfrac{1}{2k}-\dfrac{2}{\sqrt k}-\dfrac{1}{2(k-1)}+\dfrac{2}{\sqrt{k-1}}.\]当 $k=2$ 时,左边为 $\dfrac 25$,右边为 $\dfrac {7-4\sqrt 2}4$,显然成立;
当 $k\geqslant 3$ 时,考虑证明\[\dfrac{1}{k+3}\geqslant \dfrac 1{\sqrt{k-1}}-\dfrac{1}{\sqrt k},\]事实上,有\[\dfrac{1}{\sqrt{k-1}}-\dfrac{1}{\sqrt k}=\dfrac{1}{k\sqrt{k-1}+(k-1)\sqrt k}\leqslant \dfrac{1}{\sqrt 2k+2\sqrt 3}<\dfrac{1}{k+3},\]因此引理得证.
这样就有\[\sum_{k=1}^{n}\dfrac{2k}{(k+1)^2}\geqslant\sum_{k=1}^n\dfrac{2}{k+3}
\geqslant 2+\dfrac{1}{2n}-\dfrac{2}{\sqrt n},\]命题得证.
题目
问题1
答案1
解析1
备注1
问题2
答案2
解析2
备注2