如图,在直三棱柱 $ABC - {A_1}{B_1}{C_1}$ 中,$\angle BAC = {90^ \circ }$,$AB = AC = A{A_1} = 1$.$D$ 是棱 $C{C_1}$ 上的一点,$P$ 是 $AD$ 的延长线与 ${A_1}{C_1}$ 的延长线的交点,且 $P{B_1}\parallel $ 平面 $BD{A_1}$.

【难度】
【出处】
2011年高考四川卷(理)
【标注】
-
求证:$CD = {C_1}D$;标注答案略解析解法一:
连接 ${B_1}A$,交 $B{A_1}$ 于 $O$,连接 $OD$,$\because$ ${B_1}P\parallel $ 平面 $BD{A_1}$,${B_1}P \subset $ 平面 $A{B_1}P$,平面 $A{B_1}P \cap $ 平面 $BD{A_1} = OD$,
$\therefore$ ${B_1}P\parallel OD$,
又 $O$ 为 ${B_1}A$ 的中点,$\therefore$ $D$ 为 $AP$ 中点,$\therefore$ ${C_1}$ 为 ${A_1}P$ 的中点,
$\therefore$ $\triangle ACD \cong \triangle P{C_1}D$,$\therefore$ ${C}D = C_1D$.
解法二:
如图,以 ${A_1}$ 为原点,${A_1}{B_1}$,${A_1}{C_1}$,${A_1}A$ 所在直线分别为 $x$ 轴,$y$ 轴,$z$ 轴建立空间直角坐标系 ${A_1} - xyz$,则 ${A_1}\left(0,0,0\right)$,${B_1}\left(1,0,0\right)$,${C_1}\left(0,1,0\right)$,$B\left(1,0,1\right)$.
设 ${C_1}D = x$,$\because AC\parallel P{C_1}$,所以\[ \dfrac{{{C_1}P}}{AC} = \dfrac{{{C_1}D}}{CD} = \dfrac{x}{1 - x},\]由此可得 $D\left( {0,1,x} \right),P\left( {0,1 + \dfrac{x}{1 - x},0} \right)$,所以\[\begin{split}& \overrightarrow {{A_1}B} = \left( {1,0,1} \right) , \overrightarrow {{A_1}D}= \left( {0,1,x} \right) , \\ &\overrightarrow {{B_1}P} = \left( { - 1,1 + \dfrac{x}{1 - x},0} \right).\end{split}\]设平面 $B{A_1}D$ 的一个法向量为 $\overrightarrow {n_1} = \left(a,b,c\right)$,则\[\begin{cases}\overrightarrow {n_1} \cdot \overrightarrow {{A_1}B} = a + c = 0, \\
\overrightarrow {n_1} \cdot \overrightarrow {{A_1}D} = b + cx = 0. \\
\end{cases}\]令 $c = - 1$,则\[\overrightarrow {n_1} = \left( {1,x, - 1} \right).\]$\because P{B_1}\parallel $ 平面 $B{A_1}D$,所以\[\begin{split}\overrightarrow {n_1} \cdot \overrightarrow {{B_1}P} = 1 \times \left( - 1\right) + x \times \left( {1 + \dfrac{x}{1 - x}} \right) + \left( - 1\right) \times 0 = 0,\end{split}\]由此可得 $x = \dfrac{1}{2}$,故 $CD = {C_1}D$. -
求二面角 $A - {A_1}D - B$ 的平面角的余弦值;标注答案略解析解法一:
由题意 $AB \perp AC$,$AB \perp A{A_1} \Rightarrow AB \perp $ 平面 $A{A_1}{C_1}C$,
过 $A$ 作 $AE \perp {A_1}D$ 于点 $ E $,连接 $BE$,则 $BE \perp A_1D$,
$\therefore$ $\angle AEB$ 为二面角 $A - {A_1}D - B$ 的平面角.
在 $\triangle A{A_1}D$ 中,$A{A_1} = 1$,$AD = \dfrac{\sqrt 5 }{2}$,${A_1}D = \dfrac{\sqrt 5 }{2}$,则\[AE = \dfrac{2\sqrt 5 }{5},BE = \dfrac{3\sqrt 5 }{5},\]所以\[ \cos \angle AEB = \dfrac{AE}{BE} = \dfrac{{\dfrac{2\sqrt 5 }{5}}}{{\dfrac{3\sqrt 5 }{5}}} = \dfrac{2}{3}. \]解法二:由(1)知,平面 $B{A_1}D$ 的一个法向量\[\overrightarrow {n_1} = \left( {1,\dfrac{1}{2}, - 1} \right).\]又 $\overrightarrow {n_2} = \left(1,0,0\right)$ 为平面 $A{A_1}D$ 的一个法向量,所以\[ \begin{split} \cos \left\langle {\overrightarrow {n_1} ,\overrightarrow {n_2} } \right\rangle & = \dfrac{{\overrightarrow {n_1} \cdot \overrightarrow {n_2} }}{{ \left|\overrightarrow {n_1} \right| \cdot \left| \overrightarrow {n_2} \right|}} = \dfrac{1}{{1 \times \dfrac{3}{2}}} = \dfrac{2}{3}.\end{split}\]故二面角 $A - {A_1}D - B$ 的平面角的余弦值为 $\dfrac{2}{3}$. -
求点 $C$ 到平面 ${B_1}DP$ 的距离.标注答案略解析解法一:
因为 ${V_{C - {B_1}PD}} = {V_{{B_1} - PCD}}$,所以\[\dfrac{1}{3}h \cdot {S_{\Delta {B_1}PD}} = \dfrac{1}{3}{A_1}{B_1} \cdot {S_{\Delta PCD}},\]又 因为\[{A_1}{B_1} = 1,\]\[\begin{split}{S_{\triangle PCD}} & = {S_{\triangle P{C_1}C}} - {S_{\triangle P{C_1}D}} \\& = \dfrac{1}{2} - \dfrac{1}{4} = \dfrac{1}{4},\end{split}\]在 $\triangle {B_1}DP$ 中,${B_1}D = \dfrac{3}{2}$,${B_1}P = \sqrt 5 $,$PD = \dfrac{\sqrt 5 }{2}$,则\[\begin{split}\cos \angle D{B_1}P & = \dfrac{{\dfrac{9}{4} + 5 - \dfrac{5}{4}}}{{2 \cdot \dfrac{3}{2} \cdot \sqrt 5 }} = \dfrac{2\sqrt 5 }{5} , \\ \sin \angle D{B_1}P & = \dfrac{\sqrt 5 }{5}, \end{split}\]所以\[{S_{\triangle {B_1}PD}} = \dfrac{1}{2} \cdot \dfrac{3}{2} \cdot \sqrt 5 \cdot \dfrac{\sqrt 5 }{5} = \dfrac{3}{4},\]$\therefore h = \dfrac{1}{3}$.
解法二:
因为\[\begin{split} \overrightarrow {P{B_1}} & = \left( {1, - 2,0} \right), \\ \overrightarrow {PD} & = \left( {0, - 1,\dfrac{1}{2}} \right),\end{split}\]设平面 ${B_1}DP$ 的一个法向量 $\overrightarrow {n_3} = \left( {{a_1},{b_1},{c_1}} \right)$,则\[\begin{cases}\overrightarrow {n_3} \cdot \overrightarrow {P{B_1}} = {a_1} - 2{b_1} = 0, \\
\overrightarrow {n_3} \cdot \overrightarrow {PD} = - {b_1} + \dfrac{c_1}{2} = 0 ,\\
\end{cases}\]令 ${c_1} = 1$,则\[\overrightarrow {n_3} = \left( {1,\dfrac{1}{2},1} \right),\]又 $\overrightarrow {DC} = \left( {0,0,\dfrac{1}{2}} \right)$,$\therefore C$ 到平面 ${B_1}DP$ 的距离\[d = \dfrac{{\left| {\overrightarrow {DC} \cdot \overrightarrow {n_3} } \right|}}{{\left| {\overrightarrow {n_3} } \right|}} = \dfrac{1}{3}.\]
题目
问题1
答案1
解析1
备注1
问题2
答案2
解析2
备注2
问题3
答案3
解析3
备注3