对于 $n \in {\mathbb N^{\ast}}\left(n \geqslant 2\right)$,定义一个如下数阵:\[{A_{nn}} = \left( {\begin{array}{*{20}{c}}
{{a_{11}}}&{{a_{12}}}& \cdots &{{a_{1n}}} \\
{{a_{21}}}&{{a_{22}}}& \cdots &{{a_{2n}}} \\
\cdots & \cdots & \cdots & \cdots \\
{{a_{n1}}}&{{a_{n2}}}& \cdots &{{a_{nn}}}
\end{array}} \right)\]其中对任意的 $1 \leqslant i \leqslant n$,$1 \leqslant j \leqslant n$,当 $i$ 能整除 $j$ 时,${a_{ij}} = 1$;当 $i$ 不能整除 $j$ 时,${a_{ij}} = 0$.设 $\displaystyle t\left(j\right) = \sum\limits_{i = 1}^n {{a_{ij}}} = {a_{1j}} + {a_{2j}} + \cdots + {a_{nj}}$.
{{a_{11}}}&{{a_{12}}}& \cdots &{{a_{1n}}} \\
{{a_{21}}}&{{a_{22}}}& \cdots &{{a_{2n}}} \\
\cdots & \cdots & \cdots & \cdots \\
{{a_{n1}}}&{{a_{n2}}}& \cdots &{{a_{nn}}}
\end{array}} \right)\]其中对任意的 $1 \leqslant i \leqslant n$,$1 \leqslant j \leqslant n$,当 $i$ 能整除 $j$ 时,${a_{ij}} = 1$;当 $i$ 不能整除 $j$ 时,${a_{ij}} = 0$.设 $\displaystyle t\left(j\right) = \sum\limits_{i = 1}^n {{a_{ij}}} = {a_{1j}} + {a_{2j}} + \cdots + {a_{nj}}$.
【难度】
【出处】
无
【标注】
-
当 $n = 6$ 时,试写出数阵 ${A_{66}}$ 并计算 $\displaystyle \sum\limits_{j = 1}^6 {t\left(j\right)} $;标注答案${A_{66}} = \left( {\begin{array}{*{20}{c}}
1&1&1&1&1&1 \\
0&1&0&1&0&1 \\
0&0&1&0&0&1 \\
0&0&0&1&0&0 \\
0&0&0&0&1&0 \\
0&0&0&0&0&1
\end{array}} \right)$;$\displaystyle \sum\limits_{j = 1}^6 {t\left(j\right)} = 14$解析依题意可得,\[{A_{66}} = \left( {\begin{array}{*{20}{c}}
1&1&1&1&1&1 \\
0&1&0&1&0&1 \\
0&0&1&0&0&1 \\
0&0&0&1&0&0 \\
0&0&0&0&1&0 \\
0&0&0&0&0&1
\end{array}} \right),\]且 $\displaystyle \sum\limits_{j = 1}^6 {t\left(j\right)} = 1 + 2 + 2 + 3 + 2 + 4 = 14$. -
若 $\left[x\right]$ 表示不超过 $x$ 的最大整数,求证:$\displaystyle \sum\limits_{j = 1}^n {t\left(j\right)} $ $\displaystyle = \sum\limits_{i = 1}^n {\left[ \dfrac{n}{i}\right]} $;标注答案略解析由题意可知,$t\left(j\right)$ 是数阵 ${A_{nn}}$ 的第 $j$ 列的和,因此 $\displaystyle \sum\limits_{j = 1}^n {t\left(j\right)}$ 是数阵 ${A_{nn}}$ 所有数的和.
而数阵 ${A_{nn}}$ 所有数的和也可以考虑按行相加,所以对任意的 $1 \leqslant i \leqslant n$,不超过 $n$ 的倍数有 $1i$,$2i$,…,$\left[\dfrac{n}{i}\right]i$.
因此数阵 ${A_{nn}}$ 的第 $i$ 行中有 $\left[\dfrac{n}{i}\right]$ 个1,其余是 $0$,即第 $i$ 行的和为 $\left[\dfrac{n}{i}\right]$.
所以 $\displaystyle \sum\limits_{j = 1}^n {t\left(j\right)} $ $\displaystyle = \sum\limits_{i = 1}^n {\left[ \dfrac{n}{i}\right]} $. -
若 $\displaystyle f\left(n\right) = \dfrac{1}{n}\sum\limits_{j = 1}^n {t\left(j\right)} $,$g\left(n\right) = \displaystyle\int_1^n {\dfrac{1}{x}} { {\rm d}} x$,求证:$g\left(n\right) - 1 < f\left(n\right) < g\left(n\right) + 1$.标注答案略解析由 $\left[x\right]$ 的定义可知,$$\dfrac{n}{i} - 1 < \left[\dfrac{n}{i}\right] \leqslant \dfrac{n}{i},$$所以$$\displaystyle \sum\limits_{i = 1}^n {\dfrac{n}{i}} - n < \sum\limits_{i = 1}^n {\left[\dfrac{n}{i}\right]} \leqslant \sum\limits_{i = 1}^n {\dfrac{n}{i}},$$所以$$\displaystyle \sum\limits_{i = 1}^n {\dfrac{1}{i}} - 1 < f\left(n\right) \leqslant \sum\limits_{i = 1}^n {\dfrac{1}{i}} .$$考查定积分 $\displaystyle\int_1^n {\dfrac{1}{x}} { {\rm d}} x$,将区间 $\left[1,n\right]$ 分成 $n - 1$ 等分,则 $\displaystyle\displaystyle\int_1^n {\dfrac{1}{x}} { {\rm d}} x$ 的不足近似值为 $\displaystyle \sum\limits_{i = 2}^n {\dfrac{1}{i}} $,$\displaystyle\int_1^n {\dfrac{1}{x}} { {\rm d}} x$ 的过剩近似值为 $\displaystyle \sum\limits_{i = 1}^{n - 1} {\dfrac{1}{i}} $,所以$$\displaystyle \sum\limits_{i = 2}^n {\dfrac{1}{i}}< \int_1^n {\dfrac{1}{x}} { {\rm d}} x\displaystyle < \sum\limits_{i = 1}^{n - 1} {\dfrac{1}{i}} ,$$于是$$\displaystyle \sum\limits_{i = 1}^n {\dfrac{1}{i}} - 1< g\left(n\right)\displaystyle < \sum\limits_{i = 1}^n {\dfrac{1}{i}},$$故$$g\left(n\right)- 1 <\displaystyle \sum\limits_{i = 1}^n {\dfrac{1}{i} - 1 < f\left(n\right)}\displaystyle \leqslant \sum\limits_{i = 1}^n {\dfrac{1}{i}} <g\left(n\right)+ 1,$$因此$$g\left(n\right)- 1 < f\left(n\right)< g\left(n\right)+ 1.$$
题目
问题1
答案1
解析1
备注1
问题2
答案2
解析2
备注2
问题3
答案3
解析3
备注3