已知 $\triangle ABC$ 外接圆的直径为 $d$,正三角形 $\triangle DEF$ 的三个顶点分别在 $\triangle ABC$ 的三边上,求证:$\triangle DEF$ 的边长的最小值为\[\dfrac{d\cdot\sin A\sin B\sin C}{\sqrt{1+\sqrt 3\cdot \sin A\sin B\sin C+\cos A\cos B\cos C}}.\]
【难度】
【出处】
无
【标注】
【答案】
略
【解析】
如图.
不妨设 $A\leqslant B\leqslant C$,则 $A\leqslant \dfrac{\pi}3\leqslant C$,记 $BC=a$,$\angle DEC=\theta$,$\triangle DEF$ 的边长为 $x$,则 $\angle AEF=\dfrac{2\pi}3-\theta$,且 $\angle AFE=\dfrac{\pi}3-A+\theta$,于是\[\angle BFD=\dfrac{\pi}3+A-\theta,\]进而在 $\triangle CDE$ 和 $\triangle BDF$ 中分别应用正弦定理,可得\[DC=x\cdot \dfrac{\sin\theta}{\sin C},DB=x\cdot \dfrac{\sin\left(\dfrac{\pi}3+A-\theta\right)}{\sin B},\]再由 $DB+DC=a$,可得\[\begin{split}x&=\dfrac{a\cdot\sin B\sin C}{\sin B\sin\theta+\sin C\sin\left(\dfrac{\pi}3+A-\theta\right)}\\
&=\dfrac{a\cdot\sin B\sin C}{\left[\sin B-\sin C\cos\left(\dfrac{\pi}3+A\right)\right]\cdot \sin\theta+\sin C\sin\left(\dfrac{\pi}3+A\right)\cdot\cos\theta}\\
&\geqslant \dfrac{a\cdot\sin B\sin C}{\sqrt{\left[\sin B-\sin C\cos\left(\dfrac{\pi}3+A\right)\right]^2+\left[\sin C\sin\left(\dfrac{\pi}3+A\right)\right]^2}}\\
&=\dfrac{a\cdot\sin B\sin C}{\sqrt{\sin^2B-2\sin B\sin C\cos\left(\dfrac{\pi}3+A\right)+\sin^2C}}\\
&=\dfrac{a\cdot\sin B\sin C}{\sqrt{\dfrac{1-\cos 2B}2-\cos A\sin B\sin C+\sqrt 3\cdot \sin A\sin B\sin C+\dfrac{1-\cos 2C}2}}\\
&=\dfrac{a\cdot\sin B\sin C}{\sqrt {1-\cos(B+C)\cdot \cos (B-C)-\cos A\sin B\sin C+\sqrt 3\cdot \sin A\sin B\sin C}}\\
&=\dfrac{a\cdot\sin B\sin C}{\sqrt{1+\sqrt 3\cdot \sin A\sin B\sin C+\cos A\cos B\cos C}}\\
&=\dfrac{d\cdot \sin A\sin B\sin C}{\sqrt{1+\sqrt 3\cdot \sin A\sin B\sin C+\cos A\cos B\cos C}}.\end{split}\]由于\[\dfrac{\sin B-\sin C\cos\left(\dfrac{\pi}3+A\right)}{\sin C\sin\left(\dfrac{\pi}3+A\right)}\leqslant \dfrac{1-\cos\left(\dfrac{\pi}3+A\right)}{\sin\left(\dfrac{\pi}3+A\right)}=\tan \left(\dfrac{\pi}6+\dfrac A2\right),\]于是上述不等式中等号当\[\theta=\arctan\dfrac{\sin B-\sin C\cos\left(\dfrac{\pi}3+A\right)}{\sin C\sin\left(\dfrac{\pi}3+A\right)}\]时取得.因此原命题得证.

&=\dfrac{a\cdot\sin B\sin C}{\left[\sin B-\sin C\cos\left(\dfrac{\pi}3+A\right)\right]\cdot \sin\theta+\sin C\sin\left(\dfrac{\pi}3+A\right)\cdot\cos\theta}\\
&\geqslant \dfrac{a\cdot\sin B\sin C}{\sqrt{\left[\sin B-\sin C\cos\left(\dfrac{\pi}3+A\right)\right]^2+\left[\sin C\sin\left(\dfrac{\pi}3+A\right)\right]^2}}\\
&=\dfrac{a\cdot\sin B\sin C}{\sqrt{\sin^2B-2\sin B\sin C\cos\left(\dfrac{\pi}3+A\right)+\sin^2C}}\\
&=\dfrac{a\cdot\sin B\sin C}{\sqrt{\dfrac{1-\cos 2B}2-\cos A\sin B\sin C+\sqrt 3\cdot \sin A\sin B\sin C+\dfrac{1-\cos 2C}2}}\\
&=\dfrac{a\cdot\sin B\sin C}{\sqrt {1-\cos(B+C)\cdot \cos (B-C)-\cos A\sin B\sin C+\sqrt 3\cdot \sin A\sin B\sin C}}\\
&=\dfrac{a\cdot\sin B\sin C}{\sqrt{1+\sqrt 3\cdot \sin A\sin B\sin C+\cos A\cos B\cos C}}\\
&=\dfrac{d\cdot \sin A\sin B\sin C}{\sqrt{1+\sqrt 3\cdot \sin A\sin B\sin C+\cos A\cos B\cos C}}.\end{split}\]由于\[\dfrac{\sin B-\sin C\cos\left(\dfrac{\pi}3+A\right)}{\sin C\sin\left(\dfrac{\pi}3+A\right)}\leqslant \dfrac{1-\cos\left(\dfrac{\pi}3+A\right)}{\sin\left(\dfrac{\pi}3+A\right)}=\tan \left(\dfrac{\pi}6+\dfrac A2\right),\]于是上述不等式中等号当\[\theta=\arctan\dfrac{\sin B-\sin C\cos\left(\dfrac{\pi}3+A\right)}{\sin C\sin\left(\dfrac{\pi}3+A\right)}\]时取得.因此原命题得证.
答案
解析
备注