已知函数 $f(x)=(x-1){\rm e}^x-ax+1$.
【难度】
【出处】
【标注】
  1. 设 $a=0$,求不等式 $f(x)\leqslant 0$ 的解集;
    标注
    答案
    解析
  2. 求证:对任意 $a>0$,都有 $f\left(\ln(1+a)\right)<0$;
    标注
    答案
    解析
  3. 设函数 $f(x)$ 的定义域为 $\left(t,\ln\left({\rm e}^t+a\right)\right)$,$f(x)$ 的值域为 $A$,试求对任意 $a>0$ 都有 $A\subseteq (-\infty,0)$ 的充要条件.
    标注
    答案
    解析
题目 问题1 答案1 解析1 备注1 问题2 答案2 解析2 备注2 问题3 答案3 解析3 备注3
0.120591s