已知定义在区间 $(-m,m),m>0$,值域为 $\mathbb R$ 的函数 $f(x)$ 满足:$(1)$ 当 $0<x<m$ 时,$f(x)>0$;$(2)$ 对于定义域内的任何实数 $a,b$ 满足:$f(a+b)=\dfrac{f(a)+f(b)}{1-f(a)f(b)}$.若函数 $f(x)$ 存在反函数 $g(x)$,当 $n\in\mathbb N^\ast$ 时,求证:$$g\left(\dfrac17\right)+g\left(\dfrac1{13}\right)+\cdots+g\left(\dfrac1{n^2+3n+3}\right)<g\left(\dfrac12\right),$$
【难度】
【出处】
【标注】
【答案】
【解析】
令 $a=b=0$,可得$$f(0)=\dfrac{2f(0)}{1-f^2(0)},$$解得 $f(0)=0$.当 $x\in(-m,m)$ 时,$-x\in(-m,m)$,且$$0=f(x-x)=\dfrac{f(x)+f(-x)}{1-f(x)f(-x)},$$因此$$f(x)+f(-x)=0,$$即 $f(x)$ 是定义在 $(-m,m)$ 上的奇函数,于是当 $a,b\in(-m,m)$ 时,有$$f(a-b)=\dfrac{f(a)-f(b)}{1+f(a)f(b)},$$下面用数学归纳法证明:$$\mathrm{NE1}:\qquad g\left(\dfrac17\right)+g\left(\dfrac1{13}\right)+\cdots+g\left(\dfrac1{n^2+3n+3}\right)\leqslant g\left(\dfrac12\right)-g\left(\dfrac1{n+2}\right),$$当 $n=1$ 时,$$f\left(g\left(\dfrac12\right)-g\left(\dfrac13\right)\right)=\dfrac{\dfrac12-\dfrac13}{1+\dfrac12\cdot\dfrac13}=\dfrac17,$$于是$$g\left(\dfrac17\right)=g\left(\dfrac12\right)-g\left(\dfrac13\right),$$此时不等式 $\mathrm{NE1}$ 成立.
假设当 $n=k$ 时,$\mathrm{NE1}$ 成立,即$$g\left(\dfrac17\right)+g\left(\dfrac1{13}\right)+\cdots+g\left(\dfrac1{k^2+3k+3}\right)\leqslant g\left(\dfrac12\right)-g\left(\dfrac1{k+2}\right),$$则当 $n=k+1$ 时$$f\left[g\left(\dfrac1{k+2}\right)-g\left(\dfrac1{k+3}\right)\right]=\dfrac{\dfrac1{k+2}-\dfrac1{k+3}}{1+\dfrac1{k+2}\dfrac1{k+3}}=\dfrac{1}{(k+1)^2+3(k+1)+3},$$于是$$\begin{split} &g\left(\dfrac17\right)+g\left(\dfrac1{13}\right)+\cdots+g\left(\dfrac1{k^2+3k+3}\right)+g\left(\dfrac1{(k+1)^2+3(k+1)+3}\right)\\
\leqslant&g\left(\dfrac12\right)-g\left(\dfrac1{k+2}\right)+g\left(\dfrac1{(k+1)^2+3(k+1)+3}\right)\\
=&g\left(\dfrac12\right)-g\left(\dfrac1{k+2}\right)+g\left(\dfrac1{k+2}\right)-g\left(\dfrac1{k+3}\right)\\
=&g\left(\dfrac12\right)-g\left(\dfrac1{k+3}\right).\end{split}$$也满足不等式 $\mathrm{NE1}$.综上,原不等式得证.
答案 解析 备注
0.116017s