求 $f\left( x \right) = |x - 1| + |2x - 1| + \cdots + |2011x - 1|$ 的最小值.
【难度】
【出处】
2011年北京大学等三校联考自主招生保送生测试
【标注】
【答案】
$832\dfrac{{491}}{{711}}$
【解析】
因为$$f\left( x \right) = \left| {x - 1} \right| + \left| {x - \dfrac{1}{2}} \right| + \left| {x - \dfrac{1}{2}} \right| + \cdots + \underbrace {\left| {x - \dfrac{1}{{2011}}} \right| + \left| {x - \dfrac{1}{{2011}}} \right| + \cdots + \left| {x - \dfrac{1}{{2011}}} \right|}_{2011},$$计算 $1, \dfrac{1}{2}, \dfrac{1}{2}, \dfrac{1}{3}, \dfrac{1}{3}, \dfrac{1}{3},\cdots,\dfrac{1}{{2011}}, \dfrac{1}{{2011}}, \cdots ,\dfrac{1}{{2011}}$ 的中位数.
该数列即$${a_n} = k,\dfrac{{k\left( {k - 1} \right)}}{2} < n \leqslant \dfrac{{k\left( {k + 1} \right)}}{2}.$$需要计算 $n = \dfrac{{2011 \times 2012}}{4}$ 时的 $k$ 值:
解不等式:$${\left( {k - \dfrac{1}{2}} \right)^2} < 2n + \dfrac{1}{4} \leqslant {\left( {k + \dfrac{1}{2}} \right)^2},k \in {\mathbb{Z}}$$得 $k = 1422$.
于是\[\begin{split}f\left( {\dfrac{1}{{1422}}} \right) &= \dfrac{{1421 + 1420 + \cdots + 1}}{{1422}} + \dfrac{{1 + 2 + \cdots + \left( {2011 - 1422} \right)}}{{1422}}\\&= \dfrac{1}{{1422}} \times \dfrac{{1422 \times 1421}}{2} + \dfrac{1}{{1422}} \times \dfrac{{590 \cdot 589}}{2}\\& = 832\dfrac{{491}}{{711}}.\end{split}\]
该数列即$${a_n} = k,\dfrac{{k\left( {k - 1} \right)}}{2} < n \leqslant \dfrac{{k\left( {k + 1} \right)}}{2}.$$需要计算 $n = \dfrac{{2011 \times 2012}}{4}$ 时的 $k$ 值:
解不等式:$${\left( {k - \dfrac{1}{2}} \right)^2} < 2n + \dfrac{1}{4} \leqslant {\left( {k + \dfrac{1}{2}} \right)^2},k \in {\mathbb{Z}}$$得 $k = 1422$.
于是\[\begin{split}f\left( {\dfrac{1}{{1422}}} \right) &= \dfrac{{1421 + 1420 + \cdots + 1}}{{1422}} + \dfrac{{1 + 2 + \cdots + \left( {2011 - 1422} \right)}}{{1422}}\\&= \dfrac{1}{{1422}} \times \dfrac{{1422 \times 1421}}{2} + \dfrac{1}{{1422}} \times \dfrac{{590 \cdot 589}}{2}\\& = 832\dfrac{{491}}{{711}}.\end{split}\]
答案
解析
备注