已知数列 $\{a_n\}$ 满足 $a_1=1$,$a_{n+1}=a_n^2+a_n$.
【难度】
【出处】
无
【标注】
-
求证:$\displaystyle\sum_{k=1}^n\dfrac{1}{a_k+1}<1$;标注答案略解析根据题意,有\[\dfrac{1}{a_{n+1}}=\dfrac{1}{a_n}-\dfrac{1}{a_n+1},\]于是\[\sum_{k=1}^n\dfrac{1}{a_k+1}=\dfrac{1}{a_1}-\dfrac{1}{a_{n+1}}<1,\]命题得证.
-
求证:$\displaystyle\sum_{k=1}^n\dfrac{1}{\sqrt{a_k}+2}<1$.标注答案略解析注意到\[\sqrt{a_{n+1}}+2=\sqrt{a_n^2+a_n}+2>a_n+1,\]于是\[\begin{split} \sum_{k=1}^n\dfrac{1}{\sqrt{a_k}+2}&=\sum_{k=1}^4\dfrac{1}{\sqrt{a_k}+2}+\sum_{k=5}^n\dfrac{1}{\sqrt{a_k}+2}\\
&<\sum_{k=1}^4\dfrac{1}{\sqrt{a_k}+2}+\sum_{k=4}^{n-1}\dfrac{1}{a_k+1}\\
&<\sum_{k=1}^4\dfrac{1}{\sqrt{a_k}+2}+\dfrac{1}{a_4}\\
&=\dfrac{1}{3}+\dfrac{1}{\sqrt 2+2}+\dfrac{1}{\sqrt{6}+2}+\dfrac{1}{\sqrt{42}+2}+\dfrac{1}{42}\\
&=0.992\cdots\\
&<1,\end{split}\]于是原命题得证.
题目
问题1
答案1
解析1
备注1
问题2
答案2
解析2
备注2