实数列 $\{a_n\}$,$a_0=\dfrac12,$ $a_{k+1}=a_k+\dfrac1n a_k^2$($k\in\mathbb N$),求证:$1-\dfrac1n<a_n<1$.
【难度】
【出处】
无
【标注】
【答案】
略
【解析】
对 $1\leqslant k\leqslant n$,我们归纳一个加强的估计$$\dfrac{n+1}{2n-k+2}<a_k<\dfrac{n}{2n-k},$$右边:$$a_{k+1}=\dfrac{a_k}{n}\cdot (n+a_k)<\dfrac1{2n-k}\cdot \dfrac{n(2n-k+1)}{2n-k}<\dfrac{n}{2n-k-1},$$左边:$$\begin{split} a_{k+1}=&a_k+\dfrac1n a_k^2\\
>&\dfrac{n+1}{2n-k+2}+\dfrac1n\left(\dfrac{n+1}{2n-k+2}\right)^2\\
=& \dfrac{n+1}{2n-k+1}+\dfrac{n+1}{(2n-k+2)^2}\cdot\left(\dfrac{n+1}{n}-\dfrac{2n-k+1}{2n-k+2}\right)\\
>&\dfrac{n+1}{2n-k+1}.\end{split}$$
>&\dfrac{n+1}{2n-k+2}+\dfrac1n\left(\dfrac{n+1}{2n-k+2}\right)^2\\
=& \dfrac{n+1}{2n-k+1}+\dfrac{n+1}{(2n-k+2)^2}\cdot\left(\dfrac{n+1}{n}-\dfrac{2n-k+1}{2n-k+2}\right)\\
>&\dfrac{n+1}{2n-k+1}.\end{split}$$
答案
解析
备注