赌金分别为 $a$ 和 $b$($a,b\in {{\mathbf{N}}^{*}}$)的两位赌徒,进行每次单位1的赌博,已知赌徒甲每局胜率为 $p$($p\in \left( 0,1 \right)$),赌徒乙每局胜率为 $1-p$,其中一位赌徒赌金输光赌局结束,则赌徒甲最终获胜概率是多少?
【难度】
【出处】
无
【标注】
【答案】
略
【解析】
设赌徒甲在赌金剩余为 $n$ 时获胜概率为 ${{P}_{n}}$,其中 $n=0,1,2,\cdots ,a+b$,
则 ${{p}_{0}}=0$,${{P}_{a+b}}=1$,
且 ${{P}_{n}}=\left( 1-p\right){{P}_{n-1}}+p{{P}_{n+1}}$,特征方程为 $x=1-p+p{{x}^{2}}$,其特征根为 ${{x}_{1}}=1$,${{x}_{2}}=\dfrac{1-p}{p}$,
(1)若 $p=\dfrac{1}{2}$,则 ${{P}_{n}}=\lambda n+\mu $,
待定系数可得 $\left\{ \begin{align}
& {{P}_{0}}=\mu =0 \\
& {{P}_{a+b}}=\lambda \left( a+b\right)+\mu =1 \\
\end{align}\right.$,
解得 $\lambda =\dfrac{1}{a+b}$,$\mu =0$,故 ${{P}_{n}}=\dfrac{n}{a+b}$,则 ${{P}_{a}}=\dfrac{a}{a+b}$,
(2)若 $p\ne \dfrac{1}{2}$
故其通项为 ${{P}_{n}}=\lambda +\mu{{\left( \dfrac{1-p}{p} \right)}^{n}}$,
待定系数可得 $\left\{ \begin{align}
& \lambda +\mu =0 \\
& \lambda +\mu {{\left( \dfrac{1-p}{p}\right)}^{a+b}}=1 \\
\end{align}\right.$,
解得 $\mu =\dfrac{1}{{{\left(\dfrac{1-p}{p} \right)}^{a+b}}-1}$,$\lambda=-\dfrac{1}{{{\left( \dfrac{1-p}{p} \right)}^{a+b}}-1}$,
故 ${{P}_{n}}=\dfrac{{{\left(\dfrac{1-p}{p} \right)}^{n}}-1}{{{\left( \dfrac{1-p}{p} \right)}^{a+b}}-1}$,进而可求得 ${{P}_{a}}=\dfrac{{{\left( \dfrac{1-p}{p}\right)}^{a}}-1}{{{\left( \dfrac{1-p}{p} \right)}^{a+b}}-1}$.
则 ${{p}_{0}}=0$,${{P}_{a+b}}=1$,
且 ${{P}_{n}}=\left( 1-p\right){{P}_{n-1}}+p{{P}_{n+1}}$,特征方程为 $x=1-p+p{{x}^{2}}$,其特征根为 ${{x}_{1}}=1$,${{x}_{2}}=\dfrac{1-p}{p}$,
(1)若 $p=\dfrac{1}{2}$,则 ${{P}_{n}}=\lambda n+\mu $,
待定系数可得 $\left\{ \begin{align}
& {{P}_{0}}=\mu =0 \\
& {{P}_{a+b}}=\lambda \left( a+b\right)+\mu =1 \\
\end{align}\right.$,
解得 $\lambda =\dfrac{1}{a+b}$,$\mu =0$,故 ${{P}_{n}}=\dfrac{n}{a+b}$,则 ${{P}_{a}}=\dfrac{a}{a+b}$,
(2)若 $p\ne \dfrac{1}{2}$
故其通项为 ${{P}_{n}}=\lambda +\mu{{\left( \dfrac{1-p}{p} \right)}^{n}}$,
待定系数可得 $\left\{ \begin{align}
& \lambda +\mu =0 \\
& \lambda +\mu {{\left( \dfrac{1-p}{p}\right)}^{a+b}}=1 \\
\end{align}\right.$,
解得 $\mu =\dfrac{1}{{{\left(\dfrac{1-p}{p} \right)}^{a+b}}-1}$,$\lambda=-\dfrac{1}{{{\left( \dfrac{1-p}{p} \right)}^{a+b}}-1}$,
故 ${{P}_{n}}=\dfrac{{{\left(\dfrac{1-p}{p} \right)}^{n}}-1}{{{\left( \dfrac{1-p}{p} \right)}^{a+b}}-1}$,进而可求得 ${{P}_{a}}=\dfrac{{{\left( \dfrac{1-p}{p}\right)}^{a}}-1}{{{\left( \dfrac{1-p}{p} \right)}^{a+b}}-1}$.
答案
解析
备注