令 ${{f}_{k}}\left( x \right)=\dfrac{1}{k}\left( {{\sin }^{k}}x+{{\cos }^{k}}x \right)$,其中 $k=1,2,\cdots $,证明:${{f}_{4}}\left( x \right)-{{f}_{6}}\left( x \right)=\dfrac{1}{12}$ 恒成立.’
【难度】
【出处】
无
【标注】
【答案】
略
【解析】
${{f}_{4}}\left( x\right)-{{f}_{6}}\left( x \right)=\dfrac{1}{4}\left( {{\sin }^{4}}x+{{\cos}^{4}}x \right)-\dfrac{1}{6}\left( {{\sin }^{6}}x+{{\cos }^{6}}x \right)$
$=\dfrac{1}{4}\left({{\sin }^{4}}x+{{\cos }^{4}}x \right)-\dfrac{1}{6}\left( {{\sin }^{4}}x+{{\cos}^{4}}x-{{\sin }^{2}}x{{\cos }^{2}}x \right)$
$=\dfrac{1}{12}\left( {{\sin }^{4}}x+{{\cos}^{4}}x+2{{\sin }^{2}}x{{\cos }^{2}}x \right)$
$=\dfrac{1}{12}$.
$=\dfrac{1}{4}\left({{\sin }^{4}}x+{{\cos }^{4}}x \right)-\dfrac{1}{6}\left( {{\sin }^{4}}x+{{\cos}^{4}}x-{{\sin }^{2}}x{{\cos }^{2}}x \right)$
$=\dfrac{1}{12}\left( {{\sin }^{4}}x+{{\cos}^{4}}x+2{{\sin }^{2}}x{{\cos }^{2}}x \right)$
$=\dfrac{1}{12}$.
答案
解析
备注