已知椭圆 $C:\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1\left( a>b>0 \right)$,动点 $P$ 满足 $PA,PB$ 分别与 $C$ 相切,且 $PA\bot PB$,求证 $P$ 点轨迹是以 $O$ 为圆心,半径为 $\sqrt{{{a}^{2}}+{{b}^{2}}}$ 的圆.
【难度】
【出处】
无
【标注】
【答案】
略
【解析】
无
答案
解析
备注