设 $A,B,C$ 为 $\dfrac{{{x}^{2}}}{16}+\dfrac{{{y}^{2}}}{7}=1$ 上的三点,为左焦点,且 $\angle AFB=\angle BFC=\angle CFA$.求 $\dfrac{1}{\left| AF \right|}+\dfrac{1}{\left| BF \right|}+\dfrac{1}{\left| CF \right|}$ 的值.
【难度】
【出处】
无
【标注】
【答案】
$\dfrac{4}{7}$
【解析】
${{a}^{2}}=16,{{b}^{2}}=7,{{c}^{2}}=9$,则 $p=\dfrac{{{a}^{2}}}{c}-c=\dfrac{7}{3}$.
则以左焦点为极点,$x$ 轴正半轴方向为极线方向,$\rho =\dfrac{\dfrac{7}{4}}{1-\dfrac{3}{4}\cos\theta }$.
则 $\left| AF \right|=\dfrac{\dfrac{7}{4}}{1-\dfrac{3}{4}\cos{{\theta }_{1}}},\left| BF \right|=\dfrac{\dfrac{7}{4}}{1-\dfrac{3}{4}\cos\left( {{\theta }_{1}}+\dfrac{2\mathrm{ }\pi\text{ }}{3}\right)},\left| CF \right|=\dfrac{\dfrac{7}{4}}{1-\dfrac{3}{4}\cos \left({{\theta }_{1}}+\dfrac{\mathrm{4 }\pi\text{ }}{3} \right)}$,
$\dfrac{1}{\left|AF \right|}+\dfrac{1}{\left| BF \right|}+\dfrac{1}{\left| CF \right|}=\dfrac{12}{7}$.
则以左焦点为极点,$x$ 轴正半轴方向为极线方向,$\rho =\dfrac{\dfrac{7}{4}}{1-\dfrac{3}{4}\cos\theta }$.
则 $\left| AF \right|=\dfrac{\dfrac{7}{4}}{1-\dfrac{3}{4}\cos{{\theta }_{1}}},\left| BF \right|=\dfrac{\dfrac{7}{4}}{1-\dfrac{3}{4}\cos\left( {{\theta }_{1}}+\dfrac{2\mathrm{ }\pi\text{ }}{3}\right)},\left| CF \right|=\dfrac{\dfrac{7}{4}}{1-\dfrac{3}{4}\cos \left({{\theta }_{1}}+\dfrac{\mathrm{4 }\pi\text{ }}{3} \right)}$,
$\dfrac{1}{\left|AF \right|}+\dfrac{1}{\left| BF \right|}+\dfrac{1}{\left| CF \right|}=\dfrac{12}{7}$.
答案
解析
备注