设 ${{x}_{1}},{{x}_{2}},\cdots ,{{x}_{7}}\geqslant 0$ 且 ${{x}_{1}}+{{x}_{2}}+\cdots +{{x}_{7}}=1$,
【难度】
【出处】
无
【标注】
-
求 $\min \left\{ {{x}_{1}}+{{x}_{2}}+{{x}_{3}},{{x}_{2}}+{{x}_{3}}+{{x}_{4}},\cdots ,{{x}_{5}}+{{x}_{6}}+{{x}_{7}} \right\}$ 的最大值.标注答案略解析$1=\left({{x}_{1}}+{{x}_{2}}+{{x}_{3}} \right)+{{x}_{4}}+\left({{x}_{5}}+{{x}_{6}}+{{x}_{7}} \right)\geqslant \min +0\text{+}\min =2\min $
故 $\min \leqslant \dfrac{1}{2}$
${{x}_{1}}=0$,${{x}_{2}}=0$,${{x}_{3}}=\dfrac{1}{2}$,${{x}_{4}}=0$,${{x}_{5}}=\dfrac{1}{2}$,${{x}_{6}}=0$,${{x}_{7}}=0$ 时符合 -
求 $\max \left\{ {{x}_{1}}+{{x}_{2}}+{{x}_{3}},{{x}_{2}}+{{x}_{3}}+{{x}_{4}},\cdots ,{{x}_{5}}+{{x}_{6}}+{{x}_{7}} \right\}$ 的最小值.标注答案略解析$3=\left({{x}_{1}}+{{x}_{2}}+{{x}_{3}} \right)+{{x}_{4}}+\left({{x}_{5}}+{{x}_{6}}+{{x}_{7}} \right)$
$+\left({{x}_{1}}+{{x}_{2}}+{{x}_{3}} \right)+\left( {{x}_{4}}+{{x}_{5}}+{{x}_{6}}\right)+{{x}_{7}}$
$+{{x}_{1}}+\left({{x}_{2}}+{{x}_{3}}+{{x}_{4}} \right)+\left( {{x}_{5}}+{{x}_{6}}+{{x}_{7}}\right)$
$\leqslant 6\max +\left({{x}_{1}}+{{x}_{4}}+{{x}_{7}} \right)\leqslant 6\max +1$
故 $\max \geqslant \dfrac{1}{3}$
${{x}_{1}}=\dfrac{1}{3}$,${{x}_{2}}=0$,${{x}_{3}}=0$,${{x}_{4}}=\dfrac{1}{3}$,${{x}_{5}}=0$,${{x}_{6}}=0$,${{x}_{7}}=\dfrac{1}{3}$ 时符合.
题目
问题1
答案1
解析1
备注1
问题2
答案2
解析2
备注2