已知数列 $\{a_{n}\}$ 的前 $n$ 和为 $S_{n}\}$,且 $\dfrac{S_{n}}{a_{n}}=\dfrac{1}{2}a_{n+1}(n\in\mathbb N^{*})$,其中 $a_{1}=1$,$a_{n}\ne 0$.
【难度】
【出处】
【标注】
  • 题型
    >
    数列
    >
    求数列的通项公式
  • 知识点
    >
    数列
    >
    数列的通项公式
    >
    前n项和与通项公式之间的关系
  • 知识点
    >
    不等式
    >
    放缩
    >
    分析通项法
  • 题型
    >
    不等式
    >
    级数不等式的证明
  • 知识点
    >
    数列
    >
    数列极限
  • 知识点
    >
    微积分初步
    >
    导数的运算
    >
    函数极限
  • 知识点
    >
    数列
    >
    等比数列及其性质
    >
    等比数列的前n项和
  1. 求数列 $\{a_{n}\}$ 的通项公式;
    标注
    • 题型
      >
      数列
      >
      求数列的通项公式
    • 知识点
      >
      数列
      >
      数列的通项公式
      >
      前n项和与通项公式之间的关系
    答案
    $a_{n}=n(n\in\mathbb N^{*})$
    解析
    已知$$S_{n}=\dfrac{1}{2}a_{n}a_{n+1},$$故$$\begin{split}a_{n+1}&=S_{n+1}-S_{n}\\ &=\dfrac{1}{2}a_{n+1}a_{n+2}-\dfrac{1}{2}a_{n}a_{n+1}.\end{split}$$因为 $a_{n}\ne 0$,当然 $a_{n+1}\ne 0$,所以$$a_{n+2}-a_{n}=2(n\in \mathbb N^{*}).$$由于$$a_{1}=S_{1}=\dfrac{1}{2}a_{1}a_{2},a_{1}=1,$$故 $a_{2}=2$,于是$$\begin{split}a_{2m-1}&=1+2(m-1)=2m-1,\\a_{2m}&=2+2(m-1)=2m,\end{split}$$所以 $a_{n}=n(n\in\mathbb N^{*})$.
  2. 设数列 $\{b_{n}\}$ 满足 $\left(2a_{n}-1\right)\left(2^{b_{n}}-1\right)=1$,$T_{n}$ 为 $\{b_{n}\}$ 的前 $n$ 项和,求证:$2T_{n}>{\log_{2}}\left(2a_{n}+1\right),n\in\mathbb N^{*}$;
    标注
    • 知识点
      >
      不等式
      >
      放缩
      >
      分析通项法
    • 题型
      >
      不等式
      >
      级数不等式的证明
    答案
    解析
    由 $(2a_{n}-1)(2^{b_{n}}-1)=1$,得\[(2n-1)(2^{b_{n}}-1)=1,\]因为 $2^{b_{n}}=\dfrac{2n}{2n-1}$,故$$b_{n}={\log_{2}}\dfrac{2n}{2n-1},$$从而\[\begin{split}T_{n}&=b_{1}+b_{2}+\cdots+b_{n}=\log_{2}\left(\dfrac{2}{1}\cdot \dfrac{4}{3}\cdot \dfrac{6}{5}\cdots\cdots\dfrac{2n}{2n-1}\right),\\
    2T_{n}&=2\log_{2}\left(\dfrac{2}{1}\cdot \dfrac{4}{3}\cdot \dfrac{6}{5}\cdots\dfrac{2n}{2n-1}\right)=\log_{2}\left(\dfrac{2}{1}\cdot \dfrac{4}{3}\cdot\dfrac{6}{5}\cdots\dfrac{2n}{2n-1}\right)^{2},\end{split}\]因此\[\begin{split}2T_{n}-\log_{2}(2a_{n}+1)&=\log_{2}\left(\dfrac{2}{1}\cdot \dfrac{4}{3}\cdot \dfrac{6}{5}\cdots\dfrac{2n}{2n-1}\right)^{2}-\log_{2}(2n+1)\\&=\log_{2}\left(\dfrac{2}{1}\cdot \dfrac{4}{3}\cdot \dfrac{6}{5}\cdots\dfrac{2n}{2n-1}\right)^{2}+\log_{2}\dfrac{1}{2n+1}\\&=\log_{2}\left[\left(\dfrac{2}{1}\cdot \dfrac{4}{3}\cdot\dfrac{6}{5}\cdots\dfrac{2n}{2n-1}\right)^{2}\cdot \dfrac{1}{2n+1}\right].\end{split}\]设$$f(n)=\left(\dfrac{2}{1}\cdot \dfrac{4}{3}\cdot \dfrac{6}{3}\cdots\dfrac{2n}{2n-1}\right)^{2}\cdot\dfrac{1}{2n+1},$$则$$f(n+1)=\left(\dfrac{2}{1}\cdot \dfrac{4}{3}\cdot \dfrac{6}{3}\cdots\dfrac{2n}{2n-1}\cdot \dfrac{2n+2}{2n+1}\right)^{2}\cdot\dfrac{1}{2n+3},$$故\[\begin{split}\dfrac{f(n+1)}{f(n)}&=\dfrac{2n+1}{2n+3}\cdot \left(\dfrac{2n+2}{2n+1}\right)^{2}\\ &=\dfrac{(2n+2)^{2}}{(2n+3)(2n+1)}\\ &=\dfrac{4n^{2}+8n+4}{4n^{2}+8n+3}>1,\end{split}\]注意到 $f(n)>0$,所以 $f(n+1)>f(n)$.
    特别地$$f(n)\geqslant f(1)=\dfrac{4}{3}>1,$$从而$$2T_{n}-\log_{2}(2a_{n}+1)=\log_{2}f(n)>0.$$所以 $2T_{n}>\log_{2}(2a_{n}+1)$,$n\in\mathbb N^{*}$.
  3. 是否存在正整数 $m,d$,使得 $\lim\limits_{n\to \infty}\left[\left(\dfrac{1}{3}\right)^{m}+\left(\dfrac{1}{3}\right)^{m+d}+\left(\dfrac{1}{3}\right)^{m+2d}+\cdots+\left(\dfrac{1}{3}\right)^{m+(n-1)d}\right]=\dfrac{1}{a_{8}}$ 成立?若存在,请求出 $m$ 和 $d$ 的值;若不存在,请说明理由.
    标注
    • 知识点
      >
      数列
      >
      数列极限
    • 知识点
      >
      微积分初步
      >
      导数的运算
      >
      函数极限
    • 知识点
      >
      数列
      >
      等比数列及其性质
      >
      等比数列的前n项和
    答案
    解析
    易得$$\left(\dfrac{1}{3}\right)^{a_{n}}=\left(\dfrac{1}{3}\right)^{n}.$$注意到 $a_{3}=8$,则有\[\lim\limits_{n\to \infty}\left[\left(\dfrac{1}{3}\right)^{m}+\left(\dfrac{1}{3}\right)^{m+d}+\left(\dfrac{1}{3}\right)^{m+2d}+\cdots+\left(\dfrac{1}{3}\right)^{m+(n-1)d}\right]=\dfrac{\left(\dfrac{1}{3}\right)^{m}}{1-\left(\dfrac{1}{3}\right)^{d}}=\dfrac{1}{8}.\]即$$\left(\dfrac{1}{3}\right)^{m}=\dfrac{1}{8}\left[1-\left(\dfrac{1}{8}\right)^{d}\right],$$整理得\[3^{m}-3^{m-d}=8\cdots\text{ ① }\]情形一 当 $m\geqslant d$ 时,由 ① 得$$3^{m-d}(3^{d}-1)=8.$$因为 $m,d\in\mathbb N^{*}$,所以$$m=d=2.$$情形二 当 $m<d$ 时,由 ① 得\[3^{d}-1=8\cdot 3^{d-m}\cdots\text{ ② }\]因为 $m<d$,故 ② 式右边必是 $3$ 的倍数,而左边不是 $3$ 的倍数,所以 ② 式不成立.
    因此当 $m<d$ 时,不存在 $m,d\in\mathbb N^{*}$,使得 ① 式成立.
    综上所述,存在正整数$$m=d=2,$$使得 $\lim\limits_{n\to \infty}\left[\left(\dfrac{1}{3}\right)^{m}+\left(\dfrac{1}{3}\right)^{m+d}+\left(\dfrac{1}{3}\right)^{m+2d}+\cdots+\left(\dfrac{1}{3}\right)^{m+(n-1)d}\right]=\dfrac{1}{a_{8}}$ 成立.
题目 问题1 答案1 解析1 备注1 问题2 答案2 解析2 备注2 问题3 答案3 解析3 备注3
0.112042s