证明下列组合恒等式
(1)$\displaystyle \sum\limits_{k=0}^{n}{kC_{n}^{k}=n\cdot {{2}^{n-1}}}$
(2)$\displaystyle \sum\limits_{k=1}^{n}{{{k}^{2}}C_{n}^{k}}=n(n+1)\cdot {{2}^{n-2}}$
(3)$C_{n}^{0}+\dfrac{1}{2}C_{n}^{1}+\dfrac{1}{3}C_{n}^{2}+...+\dfrac{1}{n+1}C_{n}^{n}=\dfrac{{{2}^{n+1}}-1}{n+1}$
(1)$\displaystyle \sum\limits_{k=0}^{n}{kC_{n}^{k}=n\cdot {{2}^{n-1}}}$
(2)$\displaystyle \sum\limits_{k=1}^{n}{{{k}^{2}}C_{n}^{k}}=n(n+1)\cdot {{2}^{n-2}}$
(3)$C_{n}^{0}+\dfrac{1}{2}C_{n}^{1}+\dfrac{1}{3}C_{n}^{2}+...+\dfrac{1}{n+1}C_{n}^{n}=\dfrac{{{2}^{n+1}}-1}{n+1}$
【难度】
【出处】
无
【标注】
【答案】
略
【解析】
(1)由于 $kC_{n}^{k}=nC_{n-1}^{k-1}$,所以
$\displaystyle \sum\limits_{k=0}^{n}{kC_{n}^{k}}=\sum\limits_{k=0}^{n}{nC_{n-1}^{k-1}}=n\sum\limits_{k=0}^{n}{C_{n-1}^{k-1}}\text{=}n\cdot{{2}^{n-1}}$
(2)$\displaystyle \sum\limits_{k=1}^{n}{{{k}^{2}}C_{n}^{k}}=\sum\limits_{k=1}^{n}{(k(k-1)+k)C_{n}^{k}}=\sum\limits_{k=1}^{n}{k(k-1)C_{n}^{k}}+\sum\limits_{k=1}^{n}{kC_{n}^{k}}$
$\displaystyle =\sum\limits_{k=1}^{n}{n(k-1)C_{n-1}^{k-1}}+\sum\limits_{k=1}^{n}{kC_{n}^{k}}$
$\displaystyle =\sum\limits_{k=2}^{n}{n(n-1)C_{n-2}^{k-2}}+n\cdot{{2}^{n-1}}$
$=n(n-1)\cdot {{2}^{n-2}}+n\cdot{{2}^{n-1}}=n(n+1)\cdot {{2}^{n-2}}$
(3)由于 $kC_{n}^{k}=nC_{n-1}^{k-1}$ 可知:$\dfrac{\text{1}}{n}C_{n}^{k}=\dfrac{1}{k}C_{n-1}^{k-1}$,即 $\dfrac{\text{1}}{n+1}C_{n\text{+1}}^{k+1}=\dfrac{1}{k+1}C_{n}^{k}$
所以 $C_{n}^{0}+\dfrac{1}{2}C_{n}^{1}+\dfrac{1}{3}C_{n}^{2}+...+\dfrac{1}{n+1}C_{n}^{n}$
$=\dfrac{1}{n+1}(C_{n+1}^{1}+C_{n+1}^{2}+C_{n+1}^{3}+\cdots+C_{n+1}^{n+1})$
$=\dfrac{{{2}^{n+1}}-1}{n+1}$.
$\displaystyle \sum\limits_{k=0}^{n}{kC_{n}^{k}}=\sum\limits_{k=0}^{n}{nC_{n-1}^{k-1}}=n\sum\limits_{k=0}^{n}{C_{n-1}^{k-1}}\text{=}n\cdot{{2}^{n-1}}$
(2)$\displaystyle \sum\limits_{k=1}^{n}{{{k}^{2}}C_{n}^{k}}=\sum\limits_{k=1}^{n}{(k(k-1)+k)C_{n}^{k}}=\sum\limits_{k=1}^{n}{k(k-1)C_{n}^{k}}+\sum\limits_{k=1}^{n}{kC_{n}^{k}}$
$\displaystyle =\sum\limits_{k=1}^{n}{n(k-1)C_{n-1}^{k-1}}+\sum\limits_{k=1}^{n}{kC_{n}^{k}}$
$\displaystyle =\sum\limits_{k=2}^{n}{n(n-1)C_{n-2}^{k-2}}+n\cdot{{2}^{n-1}}$
$=n(n-1)\cdot {{2}^{n-2}}+n\cdot{{2}^{n-1}}=n(n+1)\cdot {{2}^{n-2}}$
(3)由于 $kC_{n}^{k}=nC_{n-1}^{k-1}$ 可知:$\dfrac{\text{1}}{n}C_{n}^{k}=\dfrac{1}{k}C_{n-1}^{k-1}$,即 $\dfrac{\text{1}}{n+1}C_{n\text{+1}}^{k+1}=\dfrac{1}{k+1}C_{n}^{k}$
所以 $C_{n}^{0}+\dfrac{1}{2}C_{n}^{1}+\dfrac{1}{3}C_{n}^{2}+...+\dfrac{1}{n+1}C_{n}^{n}$
$=\dfrac{1}{n+1}(C_{n+1}^{1}+C_{n+1}^{2}+C_{n+1}^{3}+\cdots+C_{n+1}^{n+1})$
$=\dfrac{{{2}^{n+1}}-1}{n+1}$.
答案
解析
备注