在 $\triangle ABC$ 中,求 $\dfrac{1}{\sin^2A}+\dfrac{1}{\sin^2B}+\dfrac{4}{1+\sin C}$ 的最小值.
【难度】
【出处】
无
【标注】
【答案】
略
【解析】
由二元平均不等式及积化和差公式得 $\dfrac{1}{\sin^2A}+\dfrac{1}{\sin^2B}+\dfrac{4}{1+\sin C}\geqslant\dfrac{2}{\sin A\sin B}+\dfrac{4}{1+\sin C}=\dfrac{4}{\cos(A-B)-\cos(A+B)}+\dfrac{4}{1+\sin C}\geqslant\dfrac{4}{1+\cos C}+\dfrac{4}{1+\sin C}$,当且仅当 $A=B$ 时取等号.
由柯西不等式得 $\begin{align}
\dfrac{1}{1+\cos C}+\dfrac{1}{1+\sin C}&\geqslant\dfrac{4}{1+\cos C+1+\sin C}\\
&=\dfrac{4}{2+\cos C+\sin C}\\
&\geqslant\dfrac{4}{2+\sqrt{(1^2+1^2)(\cos^2C+\sin^2C)}}\\
&=2(2-\sqrt{2})
\end{align}$
当且仅当 $\cos C=\sin C$,即 $C=\dfrac{\pi}{4}$ 时等式成立.
综上可知当 $A=B,C=\dfrac{\pi}{4}$ 时,$\dfrac{1}{\sin^2A}+\dfrac{1}{\sin^2B}+\dfrac{4}{1+\sin C}$ 取得最小值 $8(2-\sqrt{2})$.
由柯西不等式得 $\begin{align}
\dfrac{1}{1+\cos C}+\dfrac{1}{1+\sin C}&\geqslant\dfrac{4}{1+\cos C+1+\sin C}\\
&=\dfrac{4}{2+\cos C+\sin C}\\
&\geqslant\dfrac{4}{2+\sqrt{(1^2+1^2)(\cos^2C+\sin^2C)}}\\
&=2(2-\sqrt{2})
\end{align}$
当且仅当 $\cos C=\sin C$,即 $C=\dfrac{\pi}{4}$ 时等式成立.
综上可知当 $A=B,C=\dfrac{\pi}{4}$ 时,$\dfrac{1}{\sin^2A}+\dfrac{1}{\sin^2B}+\dfrac{4}{1+\sin C}$ 取得最小值 $8(2-\sqrt{2})$.
答案
解析
备注