$a_{1}, a_{2}, \cdots, a_{n}$ 为实数,如果它们中任意两数之和非负,那么对于满足 $x_{1}+x_{2}+\cdots+x_{n}=1$ 的任意非负实数 $x_{1}, x_{2}, \cdots, x_{n}$,有不等式 $a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n} \geqslant a_{1} x_{1}^{2}+a_{2} x_{2}^{2}+\cdots+a_{n} x_{n}^{2}$ 成立.请证明上述命题及其逆命题.
【难度】
【出处】
1986第1届CMO试题
【标注】
  • 知识点
    >
    二试代数部分
【答案】
【解析】
先来证明逆命题.对于 $1,2, \cdots, n$ 中的任何不同的两个数 $i,j$,取 $x_{i}=x_{j}=\frac{1}{2}$,其余的 $x_{k}=0, k \neq i, j$.由于这一组数能使不等式成立,得到 $\frac{1}{2}\left(a_{i}+a_{j}\right) \geqslant \frac{1}{4}\left(a_{i}+a_{j}\right)$ 即 $a_{i}+a_{j} \geqslant 0$,这就证完了逆命题.至于命题本身,有许许多多的证法,限于篇幅,这里只列举三种.
证法一
由于 $x_{1}+x_{2}+\cdots+x_{n}=1$,所以
$ a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=\left(a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}\right) \left(x_{1}+x_{2}+\cdots+x_{n}\right)\\= a_{1} x_{1}^{2}+a_{1} x_{1} x_{2}+\cdots+a_{1} x_{1} x_{n}+ a_{2} x_{1} x_{2}+a_{2} x_{2}^{2}+\cdots+a_{2} x_{2} x_{n}+\cdots+ a_{n} x_{1} x_{n}+a_{n} x_{2} x_{n}+\cdots+a_{n} x_{n}^{2} $
由此可知
$a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}-\left(a_{1} x_{1}^{2}+a_{2} x_{2}^{2}+\cdots+a_{n} x_{n}^{2}\right)\\=\left(a_{1}+a_{2}\right) x_{1} x_{2}+\left(a_{1}+a_{3}\right) x_{1} x_{3}+\cdots+\left(a_{1}+a_{n}\right) x_{1} x_{n}+\left(a_{2}+a_{3}\right) x_{2} x_{3}+\cdots+\left(a_{2}+a_{n}\right) x_{2} x_{n}+\cdots+\left(a_{n-1}+a_{n}\right) x_{n-1} x_{n}$
由题设可知,最后的这个和式是非负的.证毕.
证法二
当时0 $\leqslant x_{i} \leqslant 1$,总有 $x_{i}^{2} \leqslant x_{i}$;因此如果 $a_{6} \geqslant 0$ 对 $i=1,2, \cdots, n$ 均成立时,不等式显然是成立的.设在 $a_{1}, a_{2}, \cdots, a_{n}$ 中有一个负数,无妨设 $a_1<0$,由条件 $a_1+a_{j} \geqslant 0(j=2,3, \cdots, n)$,可知 $a_{j} \geqslant-a_{1}>0$.因此
$a_{1} x_{1}\left(1-x_{1}\right)+a_{2} x_{2}\left(1-x_{2}\right)+\cdots+a_{n} x_{n}\left(1-x_{n}\right) \geqslant$
$a_{1} x_{1}\left(1-x_{1}\right)-a_{1} x_{2}\left(1-x_{2}\right)-\cdots-a_{1} x_{n}\left(1-x_{n}\right)=$
$-a_{1}\left(x_{2}\left(1-x_{2}\right)+\cdots+x_{n}\left(1-x_{n}\right)-x_{1}\left(1-x_{1}\right)\right)=$
$-a_{1}\left(x_{2}\left(1-x_{2}\right)+\cdots+x_{n}\left(1-x_{n}\right)-x_{1}\left(x_{2}+\cdots+x_{n}\right)\right)=$
$-a_{1}\left(x_{2}\left(1-x_{1}-x_{2}\right)+\cdots+x_{n}\left(1-x_{1}-x_{n}\right)\right) \geqslant$
$-a_{1}\left(x_{2} \cdot 0+\cdots+x_{n} \cdot 0\right)=0$
证毕.
证法三
有许多同学试图用数学归纳法来证明本题,遗憾的是,只有个别同学是正确的.本题是可以通过数学归纳法来解的,其中的一种证法如下.$n=2$ 时是很容易证明的,这时 $x_1=1-x_2,x_2=1-x_1$,故有 $ a_{1} x_{1}\left(1-x_{1}\right)+a_{2} x_{2}\left(1-x_{2}\right)= a_{1} x_{1} x_{2}+a_{2} x_{1} x_{2}=\left(a_{1}+a_{2}\right) x_{1} x_{2} $ 它显然不是负数.设 $n=k$ 时命题成立.当 $x_{1}+x_{2}+\cdots+x_{k}+x_{k+1}=1$ 时,若 $x_{k+1}=1$,那么只能是 $x_{1}=x_{2}=\cdots=x_{k}=0$,不等式成为 $a_{k+1} \geqslant a_{k+1}$,这是合理的,故设 $0 \leqslant x_{k+1}<1$,这时 $\frac{x_{1}}{1-x_{k+1}}+\frac{x_{2}}{1-x_{k+1}}+\cdots+\frac{x_{k}}{1-x_{k+1}}=1$ 依归纳假设有 $\displaystyle \sum\limits_{i=1}^{k} a_{i} \frac{x_{i}}{1-x_{k+1}} \geqslant \sum_{i=1}^{k} a_{i}\left(\frac{x_{i}}{1-x_{k+1}}\right)^{2}$(这里及以后,均设想读者掌握了求和记号 $\displaystyle \sum$ 的意义和性质).由上式可得 $\displaystyle \left(1-x_{k+1}\right) \sum\limits_{i=1}^{k} a_{i} x_{i} \geqslant \sum_{i=1}^{k} a_{i} x_{i}^{2}$ 即 $\displaystyle \sum\limits_{i=1}^{k} a_{i} x_{i} \geqslant \sum_{i=1}^{k} a_{i} x_{i}^{2}+x_{k+1} \sum_{i=1}^{k} a_{i} x_{i}$ 将 $a_{k+1} x_{k+1}$ 同时加到上式两边得 $\displaystyle \sum\limits_{i=1}^{k+1} a_{i} x_{i} \geqslant \sum_{i=1}^{k+1} a_{i} x_{i}^{2}+x_{k+1} \sum_{i=1}^{k} a_{i} x_{i}+a_{k+1} x_{k+1}-a_{k+1} x_{k+1}^{2}$ 让我们看
$x_{k+1} \sum_{i=1}^{k} a_{i} x_{i}+a_{k+1} x_{k+1}-a_{k+1} x_{k+1}^{2}=$
$x_{k+1} \sum_{i \neq 1}^{k} a_{i} x_{i}+a_{k+1} x_{k+1}\left(1-x_{k+1}\right)=$
$x_{k+1} \sum_{i=1}^{k} a_{i} x_{i}+a_{k+1} x_{k+1}\left(x_{1}+x_{2}+\cdots+x_{k}\right)=$
$x_{k+1} \sum_{i=1}^{k}\left(a_{i}+a_{k+1}\right) x_{i} \geqslant 0$
因此就得证了 $\displaystyle \sum\limits_{i=1}^{k+1} a_{i} x_{i} \geqslant \sum_{i=1}^{k+1} a_{i} x_{i}^{2}$ 这样就完成了归纳法证明.
答案 解析 备注
0.111414s