在一个面积为 $1$ 的正三角形内部,任意放五个点.试证:在此正三角形内,一定可以作三个正三角形盖住这五个点,这三个正三角形的各边分别平行于原三角形的边,并且它们的面积之和不超过 $0.64$.
【难度】
【出处】
1987第2届CMO试题
【标注】
  • 知识点
    >
    二试几何部分
【答案】
【解析】
以 $\alpha_{1}, \alpha_{2}, \alpha_{3}$ 记所作的三个正三角形,其面积记为 $S_{1},S_{2}, S_{3}$.因为所放五点均在原三角形(记为 $\triangle A B C$)的内部,故可以 $\triangle A B C$ 的中心为中心,在 $\triangle A B C$ 的内部作它的位似三角形 $\triangle A^{\prime} B^{\prime} C^{\prime}$,使得所放五点仍在 $\triangle A^{\prime} B^{\prime} C^{\prime}$ 内部.$\triangle A^{\prime} B^{\prime} C^{\prime}$ 可认为是 $\triangle A B C$ 收缩而成.$\triangle A^{\prime} B^{\prime} C^{\prime}$ 面积为 $S, S=1-e, 0<e<1$.
把 $\Delta A^{\prime} B^{\prime} C^{\prime}$ 三边五等分,第 $1,4$ 分点依次为 $D_{1}, D_{2}, E_{1}, E_{2},F_{1}, F_{2}$,如图所示联结 $D_{1} E_{2}, E_{1} F_{2}, F_{1} D_{2}$,交于 $L, M, N$,分 $\triangle A^{\prime} B^{\prime} C^{\prime}$ 为七部分,记为小三角形 $\pi_{0}$,菱形 $\pi_{1}, \pi_{2}, \pi_{3}$,梯形 $\pi_{4}, \pi_{5}, \pi_{6}$.
(1)若有一菱形(如为 $\pi_{1}$)没放进点,则 $\pi_{2} \bigcup \pi_{4}$ 与 $\pi_{3} \bigcup \pi_{6}$ 中必有一区域(如为 $\pi_{2} \bigcup \pi_{4}$)最多放进两点,显然可作 $\alpha_{1}, \alpha_{2}$ 盖住这至多两个点,且其面积可适当任意选取,不妨设 $S_{1}=S_{2}=\delta=\dfrac{1}{2}\left(\dfrac{4}{5}\right)^{2} \varepsilon$ 令 $\alpha_3$ 为 $\triangle C^{\prime} E_{2} D_{1}$,则 $S_{3}=\left(\frac{4}{5}\right)^{2} S$,从而 $\alpha_{1}, \alpha_{2}, \alpha_{3}$ 满足要求(即盖住了五点,且三个正三角形的各边分别平行于原三角形的边),且 $S_{1}+S_{2}+S_{3}=\left(\dfrac{4}{5}\right)^{2} \varepsilon+\left(\dfrac{4}{5}\right)^{2} S=\left(\dfrac{4}{5}\right)^{2}=0.64$
(2)若每一菱形均放进点,而其余区域均没放进点,令 $\triangle A^{\prime} B^{\prime} C^{\prime}$ 各边的第 $2,3$ 分点依次为 $L_{1}, M_{2}, M_{1}, N_{2}, N_{1}, L_{2}$,如图所示则 $\Delta A^{\prime} L_{1} L_{2}, \triangle B^{\prime} M_{1} M_{2}, \triangle C^{\prime} N_{1} N_{2}$ 可作为 $\alpha_{2}, \alpha_{3}$,显然满足要求,且 $S_{1}+S_{2}+S_{3}=3\left(\dfrac{2}{5}\right)^{2} S<\left(\dfrac{4}{5}\right)^{2} S<\left(\dfrac{4}{5}\right)^{2}=0.64$
(3)若每一菱形均放进点,而其余区域只放进一点 $P$,则不妨设 $\pi_{1}$ 中放进 $2$ 点,$\pi_{2}, \pi_{3}$ 中各放进一点.
(i)$P$ 落入 $\pi_{4} \cup \pi_{0} \cup \pi_{6}$ 中,则以 $\triangle A^{\prime} F_{2} E_{1}$ 为 $\alpha_3$,情况类似于(1),同理得证;
(ii)$P$ 落入 $\pi_5$ 中,不妨设落入 $\pi_5$ 的左半部.设 $MN$ 的中点为 $Q$,过 $Q$ 作 $AC$ 的平行线,交 $B^{\prime} C^{\prime}$ 于 $N_{2}$,交 $A^{\prime} B^{\prime}$ 于 $L_{1}$.显然可作 $\alpha_{1}$ 盖住 $\pi_{3}$ 中的一点,使 $S_{1}=\delta=\left(\frac{1}{5}\right)^{2} S$;令 $\alpha_{2}$ 为 $\triangle A^{\prime} L_{1} L_{2}, \alpha_{3}$ 为 $\triangle B^{\prime} N_{2} F$,则 $\alpha_{2}$ 盖住 $\pi_{1}$ 中的两点,$\alpha_3$ 盖住了 $\pi_{2}$ 中的一点和点 $P$,$\alpha_{1}, \alpha_{2}, \alpha_{3}$ 符合要求,且 $\begin{aligned} S_{1}+S_{2}+S_{3}=&\left(\left(\frac{1}{5}\right)^{2}+\left(\frac{2}{5}\right)^{2}+\left(\frac{3}{5}\right)^{2}\right) S< \left(\frac{4}{5}\right)^{2} S<\left(\frac{4}{5}\right)^{2}=0.64 \end{aligned}$
(4)若每一菱形均放进点,而其余区域也放进两点 $P,Q$,则 $\pi_{1}, \pi_{2}, \pi_{3}$ 中各放进一点,而三个梯形中至少有一(如为 $\pi_4$)没放进点,则以 $\triangle C^{\prime} D_{1} E_{2}$ 为 $\alpha_{3}$,情况类似于(1),同理得证,证毕.
答案 解析 备注
0.188806s