设函数 $f :(0,+\infty) \rightarrow(0,+\infty)$ 满足对任意的 $x>0,y>0,f(x y) \leqslant f(x) f(y)$.试证:对任意的 $x>0, n \in \mathbf{N}$,有 $f\left(x^{n}\right) \leqslant f(x) f\left(x^{2}\right)^{\frac{1}{2}} \cdots f\left(x^{n}\right)^{\frac{1}{n}}$
【难度】
【出处】
1993第8届CMO试题
【标注】
【答案】
略
【解析】
令 $F_{n}(x)=f(x) f\left(x^{2}\right)^{\frac{1}{2}} \cdots f\left(x^{n}\right)^{\frac{1}{n}}$,则只须证 $f\left(x^{n}\right) \leqslant F_{n}(x)$.因
$\left(F_{n}(x)\right)^{n}=\left(F_{n-1}(x)\right)^{n} f\left(x^{n}\right)$
$\left(F_{n-1}(x)\right)^{n-1}=\left(F_{n-2}(x)\right)^{n-1} f\left(x^{n-1}\right)$
$\vdots$
$F_{2}(x)^{2}=F_{1}(x)^{2} f(x)^{2}$
$F_{1}(x)=f(x)$
将以上等式两边分别相乘化简得 $\left(F_{n}(x)\right)^{n}=F_{n-1}(x) F_{n-2}(x) \cdots F_{1}(x) f(x) f\left(x^{2}\right) \cdots f\left(x^{n}\right)$ 利用该式,以下用数学归纳法证明 $f\left(x^{n}\right) \leqslant F_{n}(x)$ 对一切 $n\in N$ 成立.
$n=1$ 时,$F_{1}(x)=f_{1}(x)$,故命题成立.假设 $n\leqslant k$ 时命题成立,即 $f\left(x^{i}\right) \leqslant F_{i}(x), i=1,2, \cdots, k$ 则 $n=k+1$ 时,有
$\left(F_{k+1}(x)\right)^{k+1}=F_{k}(x) F_{k-1}(x) \cdots F_{1}(x) f(x) f\left(x^{2}\right) \cdots f\left(x^{k+1}\right) \geqslant$
$f\left(x^{k}\right) f\left(x^{k-1}\right) \cdots f(x) f(x) f\left(x^{2}\right) \cdots f\left(x^{k+1}\right)=$
$f\left(x^{k+1}\right)\left(f\left(x^{k}\right) f(x)\right)\left(f\left(x^{k-1}\right) f\left(x^{2}\right)\right) \cdots\left(f(x) f\left(x^{k}\right)\right) \geqslant$
$f\left(x^{k+1}\right) f\left(x^{k+1}\right) f\left(x^{k-1+2}\right) \cdots f\left(x^{1+k}\right)=$
$\left(f\left(x^{k+1}\right)\right)^{k+1}$
故 $F_{k+1}(x) \geqslant f\left(x^{k+1}\right)$ 完成数学归纳证明.
$\left(F_{n}(x)\right)^{n}=\left(F_{n-1}(x)\right)^{n} f\left(x^{n}\right)$
$\left(F_{n-1}(x)\right)^{n-1}=\left(F_{n-2}(x)\right)^{n-1} f\left(x^{n-1}\right)$
$\vdots$
$F_{2}(x)^{2}=F_{1}(x)^{2} f(x)^{2}$
$F_{1}(x)=f(x)$
将以上等式两边分别相乘化简得 $\left(F_{n}(x)\right)^{n}=F_{n-1}(x) F_{n-2}(x) \cdots F_{1}(x) f(x) f\left(x^{2}\right) \cdots f\left(x^{n}\right)$ 利用该式,以下用数学归纳法证明 $f\left(x^{n}\right) \leqslant F_{n}(x)$ 对一切 $n\in N$ 成立.
$n=1$ 时,$F_{1}(x)=f_{1}(x)$,故命题成立.假设 $n\leqslant k$ 时命题成立,即 $f\left(x^{i}\right) \leqslant F_{i}(x), i=1,2, \cdots, k$ 则 $n=k+1$ 时,有
$\left(F_{k+1}(x)\right)^{k+1}=F_{k}(x) F_{k-1}(x) \cdots F_{1}(x) f(x) f\left(x^{2}\right) \cdots f\left(x^{k+1}\right) \geqslant$
$f\left(x^{k}\right) f\left(x^{k-1}\right) \cdots f(x) f(x) f\left(x^{2}\right) \cdots f\left(x^{k+1}\right)=$
$f\left(x^{k+1}\right)\left(f\left(x^{k}\right) f(x)\right)\left(f\left(x^{k-1}\right) f\left(x^{2}\right)\right) \cdots\left(f(x) f\left(x^{k}\right)\right) \geqslant$
$f\left(x^{k+1}\right) f\left(x^{k+1}\right) f\left(x^{k-1+2}\right) \cdots f\left(x^{1+k}\right)=$
$\left(f\left(x^{k+1}\right)\right)^{k+1}$
故 $F_{k+1}(x) \geqslant f\left(x^{k+1}\right)$ 完成数学归纳证明.
答案
解析
备注