求适合以下条件的所有函数 $f :[1,+\infty) \rightarrow[1,+\infty)$.
(1)$f(x) \leqslant 2(x+1)$;
(2)$f(x+1)=\frac{1}{x}\left((f(x))^{2}-1\right)$.
(1)$f(x) \leqslant 2(x+1)$;
(2)$f(x+1)=\frac{1}{x}\left((f(x))^{2}-1\right)$.
【难度】
【出处】
1994第9届CMO试题
【标注】
【答案】
略
【解析】
$\forall x \geqslant 1 ^ ① $,令 $g(x)=f(x)-(x+1)$ 以 ①
利用题目条件,$\forall x \geqslant 1 $,有 $-x \leqslant g(x) \leqslant x+1$ ②
显然,$\forall x \geqslant 1 $.
$ g(x+1)= f(x+1)-(x+2) \dfrac{1}{x}\left((f(x))^{2}-1\right)-(x+2)= \dfrac{1}{x}\left((g(x)+x+1)^{2}-1\right)-(x+2)\\=\dfrac{1}{x}\left((g(x)+x+1)^{2}-1-x(x+2)\right)= \dfrac{1}{x} g(x)(g(x)+2(x+1)) $ ③
下面证明对于 $\forall x \geqslant 1 $,有 $g(x)=0$ ④
用反证法,如果存在 $x_{0} \geqslant 1$,使得 $g\left(x_{0}\right)>0$,那么,由 ③ 有
$\begin{aligned} g\left(x_{0}+1\right)=& \dfrac{1}{x_{0}} g\left(x_{0}\right)\left(g\left(x_{0}\right)+2\left(x_{0}+1\right)\right)>\dfrac{x_{0}+2}{x_{0}} g\left(x_{0}\right) \end{aligned}$ ⑤
现在,用数学归纳法证明:$\forall k \in \mathbf{N}_{+}$($\mathbf{N}_{+}$ 为正整数全体组成的集合),有
$g\left(x_{0}+k\right)>\dfrac{\left(x_{0}+k\right)\left(x_{0}+k+1\right)}{x_{0}\left(x_{0}+1\right)} g\left(x_{0}\right)$ ⑥
当 $k = 1$ 时,由 ⑤ 可得 ⑥.设对某 $k \in \mathbf{N}_{+}$,⑥ 成立.则 $g(x_{0}+k)>0$.考虑 $k+1$ 情况,在 ③ 中,令 $x=x_{0}+k$,有
$g\left(x_{0}+k+1\right)=\dfrac{1}{x_{0}+k} g\left(x_{0}+k\right)\left(g\left(x_{0}+k\right)+2\left(x_{0}+k+1\right)\right)\\>\dfrac{1}{x_{0}+k} g\left(x_{0}+k\right)\left(x_{0}+k+2\right)>\dfrac{\left(x_{0}+k+1\right)\left(x_{0}+k+2\right)}{x_{0}\left(x_{0}+1\right) g\left(x_{0}\right)} g\left(x_{0}\right) ⑦ $
上述最后一个不等式是利用归纳假设 ⑥ 得出的.从而 ⑥ 对任意正整数 $k$ 成立.由于 $g\left(x_{0}\right)>0$,取充分大的正整数 $k$,使得 $g\left(x_{0}\right) \dfrac{\left(x_{0}+k\right)}{x_{0}\left(x_{0}+1\right)}>1$ ⑧ 那么,由 ⑥ 和 ⑧,有 $g\left(x_{0}+k\right)>x_{0}+k+1$ ⑨
这与 ② 的右端不等式矛盾.如果存在 $x_{0} \geqslant 1$,使得 $g\left(x_{0}\right)<0$.类似地,由 ③ 和 ②,有
$\begin{aligned} g\left(x_{0}+1\right)=& \dfrac{1}{x_{0}} g\left(x_{0}\right)\left(\left(g\left(x_{0}\right)+x_{0}\right)+\left(x_{0}+2\right)\right) \leqslant \dfrac{x_{0}+2}{x_{0}} g\left(x_{0}\right) \end{aligned}$ ⑩
类似 ⑥ 的证明,可以得到 $\forall k \in \mathbf{N}_{+}$,$g\left(x_{0}+k\right) \leqslant \dfrac{\left(x_{0}+k\right)\left(x_{0}+k+1\right)}{x_{0}\left(x_{0}+1\right)} g\left(x_{0}\right)$ ⑪
由于 $g\left(x_{0}\right)<0$,取很大的正整数 $k$,使得 $g\left(x_{0}\right) \dfrac{\left(x_{0}+k\right)}{x_{0}\left(x_{0}+1\right)}<-1$ ⑫
从⑪和⑫,有 $g\left(x_{0}+k\right)<-\left(x_{0}+k+1\right)$ ⑬
这与 ② 的左端不等式矛盾.
于是,④ 成立.再利用 ①,$\forall x \geqslant 1$,有 $f(x)=x+1$ ⑭
利用题目条件,$\forall x \geqslant 1 $,有 $-x \leqslant g(x) \leqslant x+1$ ②
显然,$\forall x \geqslant 1 $.
$ g(x+1)= f(x+1)-(x+2) \dfrac{1}{x}\left((f(x))^{2}-1\right)-(x+2)= \dfrac{1}{x}\left((g(x)+x+1)^{2}-1\right)-(x+2)\\=\dfrac{1}{x}\left((g(x)+x+1)^{2}-1-x(x+2)\right)= \dfrac{1}{x} g(x)(g(x)+2(x+1)) $ ③
下面证明对于 $\forall x \geqslant 1 $,有 $g(x)=0$ ④
用反证法,如果存在 $x_{0} \geqslant 1$,使得 $g\left(x_{0}\right)>0$,那么,由 ③ 有
$\begin{aligned} g\left(x_{0}+1\right)=& \dfrac{1}{x_{0}} g\left(x_{0}\right)\left(g\left(x_{0}\right)+2\left(x_{0}+1\right)\right)>\dfrac{x_{0}+2}{x_{0}} g\left(x_{0}\right) \end{aligned}$ ⑤
现在,用数学归纳法证明:$\forall k \in \mathbf{N}_{+}$($\mathbf{N}_{+}$ 为正整数全体组成的集合),有
$g\left(x_{0}+k\right)>\dfrac{\left(x_{0}+k\right)\left(x_{0}+k+1\right)}{x_{0}\left(x_{0}+1\right)} g\left(x_{0}\right)$ ⑥
当 $k = 1$ 时,由 ⑤ 可得 ⑥.设对某 $k \in \mathbf{N}_{+}$,⑥ 成立.则 $g(x_{0}+k)>0$.考虑 $k+1$ 情况,在 ③ 中,令 $x=x_{0}+k$,有
$g\left(x_{0}+k+1\right)=\dfrac{1}{x_{0}+k} g\left(x_{0}+k\right)\left(g\left(x_{0}+k\right)+2\left(x_{0}+k+1\right)\right)\\>\dfrac{1}{x_{0}+k} g\left(x_{0}+k\right)\left(x_{0}+k+2\right)>\dfrac{\left(x_{0}+k+1\right)\left(x_{0}+k+2\right)}{x_{0}\left(x_{0}+1\right) g\left(x_{0}\right)} g\left(x_{0}\right) ⑦ $
上述最后一个不等式是利用归纳假设 ⑥ 得出的.从而 ⑥ 对任意正整数 $k$ 成立.由于 $g\left(x_{0}\right)>0$,取充分大的正整数 $k$,使得 $g\left(x_{0}\right) \dfrac{\left(x_{0}+k\right)}{x_{0}\left(x_{0}+1\right)}>1$ ⑧ 那么,由 ⑥ 和 ⑧,有 $g\left(x_{0}+k\right)>x_{0}+k+1$ ⑨
这与 ② 的右端不等式矛盾.如果存在 $x_{0} \geqslant 1$,使得 $g\left(x_{0}\right)<0$.类似地,由 ③ 和 ②,有
$\begin{aligned} g\left(x_{0}+1\right)=& \dfrac{1}{x_{0}} g\left(x_{0}\right)\left(\left(g\left(x_{0}\right)+x_{0}\right)+\left(x_{0}+2\right)\right) \leqslant \dfrac{x_{0}+2}{x_{0}} g\left(x_{0}\right) \end{aligned}$ ⑩
类似 ⑥ 的证明,可以得到 $\forall k \in \mathbf{N}_{+}$,$g\left(x_{0}+k\right) \leqslant \dfrac{\left(x_{0}+k\right)\left(x_{0}+k+1\right)}{x_{0}\left(x_{0}+1\right)} g\left(x_{0}\right)$ ⑪
由于 $g\left(x_{0}\right)<0$,取很大的正整数 $k$,使得 $g\left(x_{0}\right) \dfrac{\left(x_{0}+k\right)}{x_{0}\left(x_{0}+1\right)}<-1$ ⑫
从⑪和⑫,有 $g\left(x_{0}+k\right)<-\left(x_{0}+k+1\right)$ ⑬
这与 ② 的左端不等式矛盾.
于是,④ 成立.再利用 ①,$\forall x \geqslant 1$,有 $f(x)=x+1$ ⑭
答案
解析
备注