给定实数 $a$ 和正整数 $n$,求证:
(1)存在唯一的实数数列 $x_0,x_1, \cdots,x_n,x_{n+ 1}$,满足
$\left\{\begin{array}{l}{x_{0}=x_{n+1}=0} \\ {\dfrac{1}{2}\left(x_{i+1}+x_{i1}\right)=x_{i}+x_{i}^{3}-a^{3}, i=1,2, \cdots, n}\end{array}\right.$
(2)(1)中的数列 $x_{0}, x_{1}, \cdots, x_{n}, x_{n+1}$ 满足 $\left|x_{i}\right| \leqslant|a|, i=0,1, \cdots, n+1$
(1)存在唯一的实数数列 $x_0,x_1, \cdots,x_n,x_{n+ 1}$,满足
$\left\{\begin{array}{l}{x_{0}=x_{n+1}=0} \\ {\dfrac{1}{2}\left(x_{i+1}+x_{i1}\right)=x_{i}+x_{i}^{3}-a^{3}, i=1,2, \cdots, n}\end{array}\right.$
(2)(1)中的数列 $x_{0}, x_{1}, \cdots, x_{n}, x_{n+1}$ 满足 $\left|x_{i}\right| \leqslant|a|, i=0,1, \cdots, n+1$
【难度】
【出处】
2004第19届CMO试题
【标注】
【答案】
略
【解析】
(1)存在性:由 $x_{i+1}=2 x_{i}+2 x_{i}^{3}-2 a^{3}-x_{i-1}, i=1,2, \cdots,n$,及 $x_0=0$ 知每一 $x_i$ 是 $x_1$ 的 $3^ {i-1}$ 次实系数多项式,从而 $x_{n+1}$ 为 $x_1$ 的 $3^n$ 次实系数多项式.由于 $3^n$ 为奇数,故存在实数 $x_1$,使得 $x_{n+1}=0$.由此 $x_1$ 及 $x_0=0$ 可计算出 $x_i$,如此得到的数列 $x_0,x_{1}, \cdots, x_{n+1}$ 满足所给条件.
唯一性:设 $w_{0}, w_{1}, \cdots, w_{n+1}$ 及 $v_{0} \cdot v_{1}, v_{2}, \cdots, v_{n+1}$ 为满足条件的两个数列,则 $\begin{aligned} \frac{1}{2}\left(w_{i+1}+w_{i-1}\right) &=w_{i}+w_{i}^{3}-a^{3} , \frac{1}{2}\left(v_{i+1}+v_{i-1}\right) =v_{i}+v_{i}^{3}-a^{3} \end{aligned}$
因此 $\frac{1}{2}\left(w_{i+1}-v_{i+1}+w_{i-1}-v_{i-1}\right)=\left(w_{i}-v_{i}\right)\left(1+w_{i}^{2}+w_{i} v_{i}+v_{i}^{2}\right)$
设 $|w_i- v_{i_0}|$ 最大,则
$\begin{aligned}\left|w_{i_{0}}-v_{i_{0}}\right| \leqslant | & w_{i_{0}}-v_{i_{0}} |\left(1+w_{i_{0}}^{2}+w_{i_{0}} v_{i_{0}}+v_{i_{0}}^{2}\right) \leqslant \frac{1}{2}\left|w_{i_{0}+1}-v_{i_{0}+1}\right|+\frac{1}{2}\left|w_{i_{0}-1}-v_{i_{0}-1}\right| \leqslant | w_{i_{0}}-v_{i_{0}} | \end{aligned}$
从而 $\left|w_{i_{0}}-v_{i_{0}}\right|=0$ 或 $1+w_{i_{0}}^{2}+w_{i_{0}} v_{i_{0}}+v_{j_{0}}^{2}=1$ 即 $\left|w_{i_{0}}-v_{i_{0}}\right|=0$ 或 $w_{i_{0}}^{2}+v_{i_{0}}^{2}+\left(w_{i_{0}}+v_{i_{0}}\right)^{2}=0$
所以 $\left|w_{i_{0}}-v_{i_{0}}\right|=0$ 总成立,从而由 $\left|w_{i_{0}}-v_{i_{0}}\right|$ 的最大性知所有 $\left|w_{i}-v_{i}\right|=0$,即 $w_{i}=v_{i}, i=1,2, \cdots, n$.唯一性得证.
(2)设 $|x_{i_0}|$ 最大,则
$\begin{aligned}\left|x_{i_{0}}\right|+\left|x_{i_{0}}\right|^{3}=&\left|x_{i_{0}}\right|\left(1+x_{i_{0}}^{2}\right)|=| \frac{1}{2}\left(x_{i_{0}+1}+x_{i_{0}-1}\right)+a^{3} | \leqslant \frac{1}{2}\left|x_{i_{0}+1}\right|+\frac{1}{2}\left|x_{i_{0}-1}\right|+|a|^{3} \leqslant \left|x_{i_{0}}\right|+|a|^{3} \end{aligned}$
因此 $\left|x_{i_{0}}\right| \leqslant|a|$.所以 $\left|x_{i}\right| \leqslant|a|, i=0,1, \cdots, n+1$ 。
唯一性:设 $w_{0}, w_{1}, \cdots, w_{n+1}$ 及 $v_{0} \cdot v_{1}, v_{2}, \cdots, v_{n+1}$ 为满足条件的两个数列,则 $\begin{aligned} \frac{1}{2}\left(w_{i+1}+w_{i-1}\right) &=w_{i}+w_{i}^{3}-a^{3} , \frac{1}{2}\left(v_{i+1}+v_{i-1}\right) =v_{i}+v_{i}^{3}-a^{3} \end{aligned}$
因此 $\frac{1}{2}\left(w_{i+1}-v_{i+1}+w_{i-1}-v_{i-1}\right)=\left(w_{i}-v_{i}\right)\left(1+w_{i}^{2}+w_{i} v_{i}+v_{i}^{2}\right)$
设 $|w_i- v_{i_0}|$ 最大,则
$\begin{aligned}\left|w_{i_{0}}-v_{i_{0}}\right| \leqslant | & w_{i_{0}}-v_{i_{0}} |\left(1+w_{i_{0}}^{2}+w_{i_{0}} v_{i_{0}}+v_{i_{0}}^{2}\right) \leqslant \frac{1}{2}\left|w_{i_{0}+1}-v_{i_{0}+1}\right|+\frac{1}{2}\left|w_{i_{0}-1}-v_{i_{0}-1}\right| \leqslant | w_{i_{0}}-v_{i_{0}} | \end{aligned}$
从而 $\left|w_{i_{0}}-v_{i_{0}}\right|=0$ 或 $1+w_{i_{0}}^{2}+w_{i_{0}} v_{i_{0}}+v_{j_{0}}^{2}=1$ 即 $\left|w_{i_{0}}-v_{i_{0}}\right|=0$ 或 $w_{i_{0}}^{2}+v_{i_{0}}^{2}+\left(w_{i_{0}}+v_{i_{0}}\right)^{2}=0$
所以 $\left|w_{i_{0}}-v_{i_{0}}\right|=0$ 总成立,从而由 $\left|w_{i_{0}}-v_{i_{0}}\right|$ 的最大性知所有 $\left|w_{i}-v_{i}\right|=0$,即 $w_{i}=v_{i}, i=1,2, \cdots, n$.唯一性得证.
(2)设 $|x_{i_0}|$ 最大,则
$\begin{aligned}\left|x_{i_{0}}\right|+\left|x_{i_{0}}\right|^{3}=&\left|x_{i_{0}}\right|\left(1+x_{i_{0}}^{2}\right)|=| \frac{1}{2}\left(x_{i_{0}+1}+x_{i_{0}-1}\right)+a^{3} | \leqslant \frac{1}{2}\left|x_{i_{0}+1}\right|+\frac{1}{2}\left|x_{i_{0}-1}\right|+|a|^{3} \leqslant \left|x_{i_{0}}\right|+|a|^{3} \end{aligned}$
因此 $\left|x_{i_{0}}\right| \leqslant|a|$.所以 $\left|x_{i}\right| \leqslant|a|, i=0,1, \cdots, n+1$ 。
答案
解析
备注