已知正实数 $a,b,c$ 满足 $\min\{ab,bc,ca\}\geqslant 1$.证明:$$\sqrt[3]{\left(a^{2}+1\right)\left(b^{2}+1\right)\left(c^{2}+1\right)} \leqslant\left(\frac{a+b+c}{3}\right)^{2}+1$$
【难度】
【出处】
2016IMO Short List
【标注】
【答案】
先证明一个引理.
引理:若任意正实数 $x,y$ 满足 $xy\geqslant 1$,则$$\left(x^{2}+1\right)\left(y^{2}+1\right) \leqslant\left(\left(\frac{x+y}{2}\right)^{2}+1\right)^{2}$$由 $xy\geqslant 1$,知$$\left(\frac{x+y}{2}\right)^{2}-1 \geqslant x y-1 \geqslant 0$$则$$\begin{aligned}\left(x^{2}+1\right)\left(y^{2}+1\right)&=(x y-1)^{2}+(x+y)^{2} \\ & \leqslant\left(\left(\frac{x+y}{2}\right)^{2}-1\right)^{2}+(x+y)^{2} \\ &=\left(\left(\frac{x+y}{2}\right)^{2}+1\right)^{2}\end{aligned}$$引理得证.
不妨设 $a\geqslant b\geqslant c$.这表明,$a\geqslant 1$.设 $d=\frac{a+b+c}{3}$.则$$a d=\frac{a(a+b+c)}{3} \geqslant \frac{1+1+1}{3}=1$$对于数对 $(a,d),(b,c)$,由引理得$$\left(a^{2}+1\right)\left(d^{2}+1\right)\left(b^{2}+1\right)\left(c^{2}+1\right) \leqslant\left(\left(\frac{a+d}{2}\right)^{2}+1\right)^{2}\left(\left(\frac{b+c}{2}\right)^{2}+1\right)^{2}$$注意到,$\frac{a+d}{2} \cdot \frac{b+c}{2} \geqslant \sqrt{a d} \sqrt{b c} \geqslant 1$.对于数对 $\left(\frac{a+d}{2},\frac{b+c}{2}\right)$,由引理得$$\begin{aligned}&\left(a^{2}+1\right)\left(d^{2}+1\right)\left(b^{2}+1\right)\left(c^{2}+1\right)\leqslant\left(\left(\frac{a+b+c+d}{4}\right)^{2}+1\right)^{4}=\left(d^{2}+1\right)^{4}\\ &\Rightarrow\left(a^{2}+1\right)\left(b^{2}+1\right)\left(c^{2}+1\right) \leqslant\left(d^{2}+1\right)^{3}\end{aligned}$$上式两边同时开三次根号即得原不等式成立
引理:若任意正实数 $x,y$ 满足 $xy\geqslant 1$,则$$\left(x^{2}+1\right)\left(y^{2}+1\right) \leqslant\left(\left(\frac{x+y}{2}\right)^{2}+1\right)^{2}$$由 $xy\geqslant 1$,知$$\left(\frac{x+y}{2}\right)^{2}-1 \geqslant x y-1 \geqslant 0$$则$$\begin{aligned}\left(x^{2}+1\right)\left(y^{2}+1\right)&=(x y-1)^{2}+(x+y)^{2} \\ & \leqslant\left(\left(\frac{x+y}{2}\right)^{2}-1\right)^{2}+(x+y)^{2} \\ &=\left(\left(\frac{x+y}{2}\right)^{2}+1\right)^{2}\end{aligned}$$引理得证.
不妨设 $a\geqslant b\geqslant c$.这表明,$a\geqslant 1$.设 $d=\frac{a+b+c}{3}$.则$$a d=\frac{a(a+b+c)}{3} \geqslant \frac{1+1+1}{3}=1$$对于数对 $(a,d),(b,c)$,由引理得$$\left(a^{2}+1\right)\left(d^{2}+1\right)\left(b^{2}+1\right)\left(c^{2}+1\right) \leqslant\left(\left(\frac{a+d}{2}\right)^{2}+1\right)^{2}\left(\left(\frac{b+c}{2}\right)^{2}+1\right)^{2}$$注意到,$\frac{a+d}{2} \cdot \frac{b+c}{2} \geqslant \sqrt{a d} \sqrt{b c} \geqslant 1$.对于数对 $\left(\frac{a+d}{2},\frac{b+c}{2}\right)$,由引理得$$\begin{aligned}&\left(a^{2}+1\right)\left(d^{2}+1\right)\left(b^{2}+1\right)\left(c^{2}+1\right)\leqslant\left(\left(\frac{a+b+c+d}{4}\right)^{2}+1\right)^{4}=\left(d^{2}+1\right)^{4}\\ &\Rightarrow\left(a^{2}+1\right)\left(b^{2}+1\right)\left(c^{2}+1\right) \leqslant\left(d^{2}+1\right)^{3}\end{aligned}$$上式两边同时开三次根号即得原不等式成立
【解析】
略
答案
解析
备注