给定正整数 $n$,实数 $x_1 , x_2 , \ldots , x_n$ 满足 $\displaystyle \sum\limits_{k=1}^{n}x_k$ 为整数.
记 $d_k =\min\limits_{m\in\mathbb{Z}}|x_k -m|$,$1\leqslant k\leqslant n$.求 $\displaystyle \sum\limits_{k=1}^{n}d_k$ 的最大值.
记 $d_k =\min\limits_{m\in\mathbb{Z}}|x_k -m|$,$1\leqslant k\leqslant n$.求 $\displaystyle \sum\limits_{k=1}^{n}d_k$ 的最大值.
【难度】
【出处】
2015年中国西部数学邀请赛试题
【标注】
【答案】
略
【解析】
证法一
不妨设 $x_1 , x_2 , \ldots , x_n$ 均属于 $(0,1]$,否则对 $x_i$ 作一个整数的平移变换,
不影响问题的结论,记 $\sum_{i=1}^{n}x_i =t$,则 $0\leqslant t\leqslant n$,$t\in\mathbb{N}^{*}$.
不妨设 $x_1 , x_2 , \ldots , x_k \leqslant\dfrac{1}{2}$ 且 $x_{k+1},x_{k+2},\ldots,x_n >\dfrac{1}{2}$.
$\begin{aligned} \sum_{k=1}^{n} d_{k} &=x_{1}+x_{2}+\cdots+x_{k}+\left(1-x_{k+1}\right)+\cdots+\left(1-x_{n}\right) =2\left(x_{1}+x_{2}+\cdots+x_{k}\right)+n-k-t \end{aligned}$
注意到 $x_1 + x_2 + \ldots + x_k \leqslant \frac{k}{2},
x_{1}+x_{2}+\cdots+x_{k}=t-\left(x_{k+1}+\cdots+x_{n}\right) \leqslant t-\frac{n-k}{2}
$
故 $\begin{aligned} \sum_{k=1}^{n} d_{k} & \leqslant \min \{k, 2 t-n+k\}+n-k-t =\min \{n-t, t\} \leqslant\left[\dfrac{n}{2}\right] \end{aligned}$
当 $n$ 为奇数时,取 $x_1 = x_2 = \ldots = x_{n-1} = \frac{1}{2}$,$x_n =0$,
当 $n$ 为偶数时,取 $x_1 = x_2 \ldots = x_n = \frac{1}{2}$,有 $\displaystyle \sum\limits_{k=1}^{n} d_k =\left[\dfrac{n}{2}\right]$.
综上可知,所求最大值为 $\left[\dfrac{n}{2}\right]$.
证法二
注意到 $d_i + \left|\dfrac{1}{2}-\{x_i \} \right|=\dfrac{1}{2}$,其中 $\{x_i \}=x_i - [x_i ]$,
故 $\displaystyle
\sum\limits_{i=1}^{n}\left|\frac{1}{2}-\left\{x_{i}\right\}\right|=\frac{n}{2}-\sum_{i=1}^{n} d_{i}
$
因此,$\displaystyle
\sum\limits_{i=1}^{n} d_{i}=\frac{n}{2}-\sum_{i=1}^{n}\left|\frac{1}{2}-\left\{x_{i}\right\}\right|
$
又 $\displaystyle \sum\limits_{i=1}^{n}\left\{x_{i}\right\}=\sum_{i=1}^{n} x_{i}-\sum_{i=1}^{n}\left[x_{i}\right] \in \mathbb{Z}$.
由此可得:当 $n$ 为偶数时,$\displaystyle
\left|\left(\sum\limits_{i=1}^{n}\left\{x_{i}\right\}\right)-\frac{n}{2}\right| \geqslant 0
$
当 $n$ 为奇数时,$\begin{aligned} \sum_{i=1}^{n} d_{i} &=\frac{n}{2}-\sum_{i=1}^{n}\left|\frac{1}{2}-\left\{x_{i}\right\}\right| \geqslant \frac{n}{2}-\left|\frac{n}{2}-\sum_{i=1}^{n}\left\{x_{i}\right\}\right| =\frac{n}{2}-\left|\frac{1}{2}+m\right| \geqslant \frac{n}{2}-\frac{1}{2} \end{aligned}$
(这里 $m$ 是一个整数)
当 $n$ 为奇数时,取 $x_1 = x_2 =\ldots=x_{n-1}=\dfrac{1}{2}$,$x_n =0$,当 $n$ 为偶数时,取 $x_1 = x_2 = \ldots = x_n = \dfrac{1}{2}$,有 $\displaystyle \sum\limits_{i=1}^{n}d_i =\left[\dfrac{n}{2}\right]$.
综上可知,所求最大值为 $\left[\dfrac{n}{2}\right]$.
不妨设 $x_1 , x_2 , \ldots , x_n$ 均属于 $(0,1]$,否则对 $x_i$ 作一个整数的平移变换,
不影响问题的结论,记 $\sum_{i=1}^{n}x_i =t$,则 $0\leqslant t\leqslant n$,$t\in\mathbb{N}^{*}$.
不妨设 $x_1 , x_2 , \ldots , x_k \leqslant\dfrac{1}{2}$ 且 $x_{k+1},x_{k+2},\ldots,x_n >\dfrac{1}{2}$.
$\begin{aligned} \sum_{k=1}^{n} d_{k} &=x_{1}+x_{2}+\cdots+x_{k}+\left(1-x_{k+1}\right)+\cdots+\left(1-x_{n}\right) =2\left(x_{1}+x_{2}+\cdots+x_{k}\right)+n-k-t \end{aligned}$
注意到 $x_1 + x_2 + \ldots + x_k \leqslant \frac{k}{2},
x_{1}+x_{2}+\cdots+x_{k}=t-\left(x_{k+1}+\cdots+x_{n}\right) \leqslant t-\frac{n-k}{2}
$
故 $\begin{aligned} \sum_{k=1}^{n} d_{k} & \leqslant \min \{k, 2 t-n+k\}+n-k-t =\min \{n-t, t\} \leqslant\left[\dfrac{n}{2}\right] \end{aligned}$
当 $n$ 为奇数时,取 $x_1 = x_2 = \ldots = x_{n-1} = \frac{1}{2}$,$x_n =0$,
当 $n$ 为偶数时,取 $x_1 = x_2 \ldots = x_n = \frac{1}{2}$,有 $\displaystyle \sum\limits_{k=1}^{n} d_k =\left[\dfrac{n}{2}\right]$.
综上可知,所求最大值为 $\left[\dfrac{n}{2}\right]$.
证法二
注意到 $d_i + \left|\dfrac{1}{2}-\{x_i \} \right|=\dfrac{1}{2}$,其中 $\{x_i \}=x_i - [x_i ]$,
故 $\displaystyle
\sum\limits_{i=1}^{n}\left|\frac{1}{2}-\left\{x_{i}\right\}\right|=\frac{n}{2}-\sum_{i=1}^{n} d_{i}
$
因此,$\displaystyle
\sum\limits_{i=1}^{n} d_{i}=\frac{n}{2}-\sum_{i=1}^{n}\left|\frac{1}{2}-\left\{x_{i}\right\}\right|
$
又 $\displaystyle \sum\limits_{i=1}^{n}\left\{x_{i}\right\}=\sum_{i=1}^{n} x_{i}-\sum_{i=1}^{n}\left[x_{i}\right] \in \mathbb{Z}$.
由此可得:当 $n$ 为偶数时,$\displaystyle
\left|\left(\sum\limits_{i=1}^{n}\left\{x_{i}\right\}\right)-\frac{n}{2}\right| \geqslant 0
$
当 $n$ 为奇数时,$\begin{aligned} \sum_{i=1}^{n} d_{i} &=\frac{n}{2}-\sum_{i=1}^{n}\left|\frac{1}{2}-\left\{x_{i}\right\}\right| \geqslant \frac{n}{2}-\left|\frac{n}{2}-\sum_{i=1}^{n}\left\{x_{i}\right\}\right| =\frac{n}{2}-\left|\frac{1}{2}+m\right| \geqslant \frac{n}{2}-\frac{1}{2} \end{aligned}$
(这里 $m$ 是一个整数)
当 $n$ 为奇数时,取 $x_1 = x_2 =\ldots=x_{n-1}=\dfrac{1}{2}$,$x_n =0$,当 $n$ 为偶数时,取 $x_1 = x_2 = \ldots = x_n = \dfrac{1}{2}$,有 $\displaystyle \sum\limits_{i=1}^{n}d_i =\left[\dfrac{n}{2}\right]$.
综上可知,所求最大值为 $\left[\dfrac{n}{2}\right]$.
答案
解析
备注