给定整数 $n\geqslant 2$,设实数 $x_1 , x_2 , \ldots , x_n$ 满足:
(1)$\displaystyle \sum\limits_{i=1}^{n}x_i =0$;
(2)$|x_i | \leqslant 1$,$i=1,2,\ldots , n$.
求 $\min\limits_{1\leqslant i\leqslant n-1}|x_i - x_{i+1}|$ 的最大值.
(1)$\displaystyle \sum\limits_{i=1}^{n}x_i =0$;
(2)$|x_i | \leqslant 1$,$i=1,2,\ldots , n$.
求 $\min\limits_{1\leqslant i\leqslant n-1}|x_i - x_{i+1}|$ 的最大值.
【难度】
【出处】
2014年中国西部数学邀请赛试题
【标注】
【答案】
略
【解析】
记 $A=\min_{1\leqslant i\leqslant n-1}|x_i -x_{i+1}|$.当 $n$ 为偶数时,$A$ 的最大值为 $2$;当 $n$ 为奇数时,$A$ 最大值为 $\frac{2n}{n+1}$.
(a)当 $n$ 为偶数时,由条件(2)可知对 $1\leqslant i\leqslant n-1$,有 $
\left|x_{i}-x_{i+1}\right| \leqslant\left|x_{i}\right|+\left|x_{i+1}\right| \leqslant 2
$,从而 $A\leqslant 2$;取 $x_i = (-1)^i$,$i=1,2,\ldots ,n$,满足条件(1),(2),且 $A=2$.因此 $A$ 最大值为 $2$.
(b)当 $n$ 为奇数时,设 $n=2k+1$.
若存在 $i$ 使得 $x_i \leqslant x_{i+1}\leqslant x_{i+2}$ 或 $x_i \geqslant x_{i+1}\geqslant x_{i+2}$,则由 $A\leqslant |x_i - x_{i+1}|$,$A\leqslant |x_{i+1}-x_{i+2}|$ 可知 $2A\leqslant |x_{i+2}-x_i |\leqslant 2$,于是 $A\leqslant 1<\frac{2n}{n+1}$;
否则,可不妨设 $x_{2i-1}>x_{2i},x_{2i}<x_{2i+1}$,$i=1,2,\ldots,k$,于是有
$\begin{aligned}
(2 k+2) A & \leqslant \sum_{i=1}^{k}\left(\left|x_{2 i-1}-x_{2 i}\right|+\left|x_{2 i}-x_{2 i+1}\right|\right)+\left( \left| x_{1}- x_{2}|+| x_{2 k}-x_{2 k+1} \right| \right) \\
&= \sum_{i=1}^{k}\left(x_{2 i-1}-x_{2 i}+x_{2 i+1}-x_{2 i}\right)+\left(x_{1}-x_{2}+x_{2 k+1}-x_{2 k} \right) \\
&=2 \sum_{i=1}^{k+1} x_{2 i-1}-2 \sum_{i=1}^{k} x_{2 i}-x_{2}-x_{2 k} \\
&<-4 \sum_{i=1}^{k} x_{2 i}-x_{2}-x_{2 k} \\
& \leqslant 4 k+2
\end{aligned}$
即 $A\leqslant\dfrac{4k+2}{2k+2}=\dfrac{2n}{n+1}$.取 $
x_{i}=\left\{\begin{aligned}&\dfrac{k}{k+1}, &&~~i=1,3, \ldots, 2 k+1 \\ &-1, &&~~i=2,4, \ldots, 2 k\end{aligned}\right.
$
则容易验证此数列满足条件(1),(2),且 $A=\dfrac{2k+1}{k+1}=\dfrac{2n}{n+1}$.
因此 $A$ 的最大值为 $\dfrac{2n}{n+1}$.
(a)当 $n$ 为偶数时,由条件(2)可知对 $1\leqslant i\leqslant n-1$,有 $
\left|x_{i}-x_{i+1}\right| \leqslant\left|x_{i}\right|+\left|x_{i+1}\right| \leqslant 2
$,从而 $A\leqslant 2$;取 $x_i = (-1)^i$,$i=1,2,\ldots ,n$,满足条件(1),(2),且 $A=2$.因此 $A$ 最大值为 $2$.
(b)当 $n$ 为奇数时,设 $n=2k+1$.
若存在 $i$ 使得 $x_i \leqslant x_{i+1}\leqslant x_{i+2}$ 或 $x_i \geqslant x_{i+1}\geqslant x_{i+2}$,则由 $A\leqslant |x_i - x_{i+1}|$,$A\leqslant |x_{i+1}-x_{i+2}|$ 可知 $2A\leqslant |x_{i+2}-x_i |\leqslant 2$,于是 $A\leqslant 1<\frac{2n}{n+1}$;
否则,可不妨设 $x_{2i-1}>x_{2i},x_{2i}<x_{2i+1}$,$i=1,2,\ldots,k$,于是有
$\begin{aligned}
(2 k+2) A & \leqslant \sum_{i=1}^{k}\left(\left|x_{2 i-1}-x_{2 i}\right|+\left|x_{2 i}-x_{2 i+1}\right|\right)+\left( \left| x_{1}- x_{2}|+| x_{2 k}-x_{2 k+1} \right| \right) \\
&= \sum_{i=1}^{k}\left(x_{2 i-1}-x_{2 i}+x_{2 i+1}-x_{2 i}\right)+\left(x_{1}-x_{2}+x_{2 k+1}-x_{2 k} \right) \\
&=2 \sum_{i=1}^{k+1} x_{2 i-1}-2 \sum_{i=1}^{k} x_{2 i}-x_{2}-x_{2 k} \\
&<-4 \sum_{i=1}^{k} x_{2 i}-x_{2}-x_{2 k} \\
& \leqslant 4 k+2
\end{aligned}$
即 $A\leqslant\dfrac{4k+2}{2k+2}=\dfrac{2n}{n+1}$.取 $
x_{i}=\left\{\begin{aligned}&\dfrac{k}{k+1}, &&~~i=1,3, \ldots, 2 k+1 \\ &-1, &&~~i=2,4, \ldots, 2 k\end{aligned}\right.
$
则容易验证此数列满足条件(1),(2),且 $A=\dfrac{2k+1}{k+1}=\dfrac{2n}{n+1}$.
因此 $A$ 的最大值为 $\dfrac{2n}{n+1}$.
答案
解析
备注