已知实数列 $\left\{a_{n}\right\}$ 满足 $a_{1}=\dfrac{1}{2}, a_{2}=\dfrac{3}{8}$,且 $a_{n+1}^{2}+3 a_{n} a_{n+2}=2 a_{n+1}\left(a_{n}+a_{n+2}\right)(n=1,2, \cdots)$.
(1)求数列 $\left\{a_{n}\right\}$ 的通项公式;
(2)证明:$0<a_{n}<\dfrac{1}{\sqrt{2 n+1}}$.
【难度】
【出处】
2017中国东南数学奥林匹克试题(高一)
【标注】
  • 知识点
    >
    二试代数部分
【答案】
【解析】
证法一
(1)由 $a_{n+1}^{2}+3 a_{n} a_{n+2}=2 a_{n+1}\left(a_{n}+a_{n+2}\right)$ 得,$a_{n} a_{n+2}-a_{n+1}^{2}=2 a_{n+1}\left(a_{n}+a_{n+2}\right)-2 a_{n} a_{n+2}-2 a_{n+1}^{2}$,即 $a_{n+1}\left(a_{n}-a_{n+1}\right)-a_{n}\left(a_{n+1}-a_{n+2}\right)=2\left(a_{n}-a_{n+1}\right)\left(a_{n+1}-a_{n+2}\right)$ ①
因为 $\left(a_{n}-a_{n+1}\right)\left(a_{n+1}-a_{n+2}\right) \neq 0$(若 $a_{n}-a_{n+1}=0$ 或 $a_{n+1}-a_{n+2}=0$,则与已知不符),由 ① 得 $\dfrac{a_{n+1}}{a_{n+1}-a_{n+2}}-\dfrac{a_{n}}{a_{n}-a_{n+1}}=2$,则 $\dfrac{a_{n}}{a_{n}-a_{n+1}}=\dfrac{a_{1}}{a_{1}-a_{2}}+2(n-1)=2 n+2$,于是 $a_{n+1}=\dfrac{2 n+1}{2 n+2} a_{n}$,则 $a_{n}=\dfrac{2 n-1}{2 n} a_{n-1}=\dfrac{2 n-1}{2 n} \centerdot \dfrac{2 n-3}{2 n-2}\centerdot\cdots \centerdot \dfrac{3}{4} a_{1}=\dfrac{(2 n-1) ! !}{(2 n) ! !}$.
(2)显然 $a_n>0$,而
$\begin{aligned} a_{n} &=\frac{2 n-1}{2 n} \centerdot \frac{2 n-3}{2 n-2} \cdots \frac{3}{4} \centerdot \frac{1}{2} \\ &<\frac{2 n}{2 n+1} \centerdot \frac{2 n-2}{2 n-1} \dots \frac{4}{5} \centerdot \frac{2}{3}\\ &=\dfrac{1}{\frac{2 n+1}{2 n} \centerdot \frac{2 n-1}{2 n-2} \centerdot \dots \frac{5}{4} \centerdot \tfrac{3}{2}}\\ &=\frac{1}{(2 n+1) a_{n}} \end{aligned}$
故 $a_{n}^{2}<\dfrac{1}{2 n+1}$,于是 $0<a_{n}<\dfrac{1}{\sqrt{2 n+1}}$.
证法二
(1)由已知,$a_{n} \neq 0$,在 $a_{n+1}^{2}+3 a_{n} a_{n+2}=2 a_{n+1}\left(a_{n}+a_{n+2}\right)$ 两边同时除以 $a_{n} a_{n+1}$ 得,$\dfrac{a_{n+1}}{a_{n}}+\dfrac{3 a_{n+2}}{a_{n+1}}=2+\dfrac{2 a_{n+2}}{a_{n}}$.
令 $b_{n}=\dfrac{a_{n+1}}{a_{n}}$,则上式为 $b_{n}+3 b_{n+1}=2+2 b_{n} b_{n+1}$,即 $b_{n+1}-b_{n}=2\left(b_{n}-1\right)\left(b_{n+1}-1\right)$ ②
因为 $b_{n} \neq 1$(若 $a_{n}-a_{n+1}=0$ 或 $a_{n+1}-a_{n+2}=0$,则与已知不符),由 ② 得 $\dfrac{1}{b_{n+1}-1}-\dfrac{1}{b_{n}-1}=-2$,则 $\dfrac{1}{b_{n}-1}=\dfrac{1}{b_{1}-1}-2(n-1)=\dfrac{1}{b_{1}-1}-2(n-1)=-2 n-2$,于是 $a_{n+1}=\dfrac{2 n+1}{2 n+2} a_{n}$,则 $a_{n}=\dfrac{2 n-1}{2 n} a_{n-1}=\dfrac{2 n-1}{2 n} \centerdot \dfrac{2 n-3}{2 n-2} \centerdot \cdots \centerdot \dfrac{3}{4} a_{1}=\dfrac{(2 n-1) ! !}{(2 n) ! !}$.
(2)显然 $a_{n}>0$.
当 $n=1$ 时,$a_{1}=\dfrac{1}{2}<\dfrac{1}{\sqrt{3}}$ 不等式成立.假设 $n=k$ 时,$a_{k}<-\dfrac{1}{\sqrt{2 k+1}}$,则 $\begin{aligned} a_{k+1} =\frac{2 k+1}{2 k+2} a_{k}<\frac{2 k+1}{2 k+2} \cdot \frac{1}{\sqrt{2 k+1}} =\frac{\sqrt{2 k+1}}{2 k+2}<\frac{1}{\sqrt{2 k+3}} \end{aligned}$,即当 $n=k+1$ 时,不等式亦成立.由数学归纳法知,$0<a_{n}<\dfrac{1}{\sqrt{2 n+1}}$.
答案 解析 备注
0.140353s