设 $n$ 是大于 $1$ 的整数,正实数 $x_1 , x_2 , \ldots , x_n$ 满足:$x_{1}+x_{2}+\ldots+x_{n}=1$.
证明:$\displaystyle \sum\limits_{i=1}^{n} \dfrac{x_{i}}{x_{i+1}-x_{i+1}^{3}} \geqslant \dfrac{n^{3}}{n^{2}-1}$,其中 $x_{n+1}=x_1$.
证明:$\displaystyle \sum\limits_{i=1}^{n} \dfrac{x_{i}}{x_{i+1}-x_{i+1}^{3}} \geqslant \dfrac{n^{3}}{n^{2}-1}$,其中 $x_{n+1}=x_1$.
【难度】
【出处】
2014中国东南数学奥林匹克试题(高二)
【标注】
【答案】
略
【解析】
显然 $0<x_i <1$,$i=1,2,\ldots,n$,由柯西不等式与平均值不等式得,
$\begin{aligned} &\left(\sum_{i=1}^{n} \frac{x_{i}}{x_{i+1}-x_{i+1}^{3}}\right) \cdot\left(\sum_{i=1}^{n}\left(1-x_{i+1}^{2}\right)\right) \\ \geqslant &\left(\sum_{i=1}^{n} \sqrt{\frac{x_{i}}{x_{i+1}-x_{i+1}^{3}}} \cdot \sqrt{1-x_{i+1}^{2}}\right)^{2} \\=&\left(\sum_{i=1}^{n} \sqrt{\frac{x_{i}}{x_{i+1}}}\right)^{2} \\ \geqslant &\left(n \cdot\left(\prod_{i=1}^{n} \sqrt{\frac{x_{i}}{x_{i+1}}}\right)^{\frac{1}{n}}\right)^{2}=n^{2} \end{aligned}$ ①
$\displaystyle \sum\limits_{i=1}^{n}\left(1-x_{i+1}^{2}\right)=n-\sum_{i=1}^{n} x_{i}^{2} \leqslant n-\frac{1}{n} \cdot\left(\sum_{i=1}^{n} x_{i}\right)^{2}=\dfrac{n^{2}-1}{n}
$ ②
由 ①,② 得,$\displaystyle \sum\limits_{i=1}^{n} \dfrac{x_{i}}{x_{i+1}-x_{i+1}^{3}} \geqslant \dfrac{n^{3}}{n^{2}-1}$.
$\begin{aligned} &\left(\sum_{i=1}^{n} \frac{x_{i}}{x_{i+1}-x_{i+1}^{3}}\right) \cdot\left(\sum_{i=1}^{n}\left(1-x_{i+1}^{2}\right)\right) \\ \geqslant &\left(\sum_{i=1}^{n} \sqrt{\frac{x_{i}}{x_{i+1}-x_{i+1}^{3}}} \cdot \sqrt{1-x_{i+1}^{2}}\right)^{2} \\=&\left(\sum_{i=1}^{n} \sqrt{\frac{x_{i}}{x_{i+1}}}\right)^{2} \\ \geqslant &\left(n \cdot\left(\prod_{i=1}^{n} \sqrt{\frac{x_{i}}{x_{i+1}}}\right)^{\frac{1}{n}}\right)^{2}=n^{2} \end{aligned}$ ①
$\displaystyle \sum\limits_{i=1}^{n}\left(1-x_{i+1}^{2}\right)=n-\sum_{i=1}^{n} x_{i}^{2} \leqslant n-\frac{1}{n} \cdot\left(\sum_{i=1}^{n} x_{i}\right)^{2}=\dfrac{n^{2}-1}{n}
$ ②
由 ①,② 得,$\displaystyle \sum\limits_{i=1}^{n} \dfrac{x_{i}}{x_{i+1}-x_{i+1}^{3}} \geqslant \dfrac{n^{3}}{n^{2}-1}$.
答案
解析
备注