设 $n$ 为大于 $1$ 的整数,将前 $n$ 个素数从小到大依次记为 $p_1 , p_2 ,\ldots, p_n$(即 $p_1 =2, p_2 =3,\ldots$)令 $A=p_{1}^{p_1}p_{2}^{p_2}\ldots p_{n}^{p_n}$.求所有正整数 $x$,使得 $\dfrac{A}{x}$ 为偶数,且 $\dfrac{A}{x}$ 恰有 $x$ 个不同的正约数.
【难度】
【出处】
2013中国东南数学奥林匹克试题
【标注】
【答案】
略
【解析】
由已知得 $2x ~|~ A$,注意到 $A=4\cdot p_{2}^{p_2}\ldots p_{n}^{p_n}$,故可设 $x=2^{\alpha_{1}}p_{2}^{\alpha_2}\ldots p_{n}^{\alpha_n}$,
其 $0\leqslant \alpha_1 \leqslant 1,0\leqslant \alpha_i \leqslant p_i$($i=2,3,\ldots,n$).此时有
$
\dfrac{A}{x}=2^{2-\alpha_{1}} p_{2}^{p_{2}-\alpha_{2}} \ldots p_{n}^{p_{n}-\alpha_{n}}
$
故 $\dfrac{A}{x}$ 不同的正约数个数为 $\left(3-\alpha_{1}\right)\left(p_{2}-\alpha_{2}+1\right) \cdots\left(p_{n}-\alpha_{n}+1\right)$.由已知得
$\left(3-\alpha_{1}\right)\left(p_{2}-\alpha_{2}+1\right) \ldots\left(p_{n}-\alpha_{n}+1\right)=x=2^{\alpha_{1}} p^{\alpha_{2}} \ldots p_{n}^{\alpha_n}
$ ①
下面数学归纳法证明:满足 ① 的数组 $(\alpha_1 , \alpha_2 , \ldots , \alpha_n )$ 必为 $(1,1,\ldots,1)$($n\geqslant 2$).
(1)当 $n=2$ 时,① 变为 $\left(3-\alpha_{1}\right)\left(4-\alpha_{2}\right)=2^{\alpha_{1}} 3^{\alpha_{2}}$,其中 $\alpha_l \in \{0,1\}$.若 $\alpha_1 =0$,则 $3(4-\alpha_2 )=3^{\alpha_2}$,无非负整数 $\alpha_2$ 满足;若 $\alpha_1 =1$,则 $2(4-\alpha_2 )=2\cdot 3^{\alpha_2}$,可得 $\alpha_2 =1$.从而 $(\alpha_l , \alpha_2 )=(1, 1)$,即 $n=2$ 时结论成立.
(2)假设 $n=k-1$ 时结论成立(其中 $k\geqslant 3$),则当 $n=k$ 时,① 变为
$\left(3-\alpha_{1}\right)\left(p_{2}-\alpha_{2}+1\right) \ldots\left(p_{k-1}-\alpha_{k-1}+1\right)\left(p_{k}-\alpha_{k}+1\right)=2^{\alpha_1}p_{2}^{\alpha_2}\ldots p_{k-1}^{\alpha_{k-1}}p_{k}^{\alpha_k}
$ ②
若 $a_k \geqslant 2$,则考虑到
$\begin{aligned}{c}{0<p_{k}-\alpha_{k}+1<p_{k}}, \quad{0<p_{i}-\alpha_{i}+1 \leqslant p_{i}+1<p_{k}(1 \leqslant i \leqslant k-1)}\end{aligned}$
故 ② 的左边不能被 $p_k$ 整除,但此时 ② 的右边是 $p_k$ 的倍数,矛盾!
若 $\alpha_k =0$,则 ② 变为 $\left(3-\alpha_{1}\right)\left(p_{2}-\alpha_{2}+1\right) \ldots\left(p_{k-1}-\alpha_{k-1}+1\right)\left(p_{k}+1\right)=2^{\alpha_1}p_{2}^{\alpha_2}\ldots p_{k-1}^{\alpha_{k-1}}$
注意到 $p_2 , p_3 ,\ldots, p_k$ 为奇素数,因此一方面 $p_k +1$ 为偶数,
从而上式左边为偶数,而另一方面,右边 $p_{2}^{\alpha_2}\ldots p_{k-1}^{\alpha_{k-1}}$ 为奇数.从而必有 $\alpha_1 =1$.但此时 $3-\alpha_1 = 2$,故左边是 $4$ 的倍数,但右边不是 $4$ 的倍数,仍矛盾!
由上述讨论知,只能 $\alpha_k =1$,此时 ② 中 $p_k - \alpha_k +1=p_{k}^{\alpha_k}=p_k$,因而
$\left(3-\alpha_{1}\right)\left(p_{2}-\alpha_{2}+1\right) \ldots\left(p_{k-1}-\alpha_{k-1}+1\right)=2^{\alpha_1}p_{2}^{\alpha_2}\ldots p_{k-1}^{\alpha_{k-1}}$
由归纳假设知 $\alpha_1 =\alpha_2 =\ldots=\alpha_{k-1}=1$.从而 $\alpha_1 = \alpha_2 = \ldots = \alpha_{k-1} = \alpha_k =1$,
即当 $n=k$ 时结论成立.
由 ①,② 可断定 $(\alpha_1 , \alpha_2 , \ldots, \alpha_n )=(1,1,\ldots,1)$,故所求正整数为 $
x=2 p_{2} \ldots p_{n}=p_{1} p_{2} \cdots p_{n}
$.
其 $0\leqslant \alpha_1 \leqslant 1,0\leqslant \alpha_i \leqslant p_i$($i=2,3,\ldots,n$).此时有
$
\dfrac{A}{x}=2^{2-\alpha_{1}} p_{2}^{p_{2}-\alpha_{2}} \ldots p_{n}^{p_{n}-\alpha_{n}}
$
故 $\dfrac{A}{x}$ 不同的正约数个数为 $\left(3-\alpha_{1}\right)\left(p_{2}-\alpha_{2}+1\right) \cdots\left(p_{n}-\alpha_{n}+1\right)$.由已知得
$\left(3-\alpha_{1}\right)\left(p_{2}-\alpha_{2}+1\right) \ldots\left(p_{n}-\alpha_{n}+1\right)=x=2^{\alpha_{1}} p^{\alpha_{2}} \ldots p_{n}^{\alpha_n}
$ ①
下面数学归纳法证明:满足 ① 的数组 $(\alpha_1 , \alpha_2 , \ldots , \alpha_n )$ 必为 $(1,1,\ldots,1)$($n\geqslant 2$).
(1)当 $n=2$ 时,① 变为 $\left(3-\alpha_{1}\right)\left(4-\alpha_{2}\right)=2^{\alpha_{1}} 3^{\alpha_{2}}$,其中 $\alpha_l \in \{0,1\}$.若 $\alpha_1 =0$,则 $3(4-\alpha_2 )=3^{\alpha_2}$,无非负整数 $\alpha_2$ 满足;若 $\alpha_1 =1$,则 $2(4-\alpha_2 )=2\cdot 3^{\alpha_2}$,可得 $\alpha_2 =1$.从而 $(\alpha_l , \alpha_2 )=(1, 1)$,即 $n=2$ 时结论成立.
(2)假设 $n=k-1$ 时结论成立(其中 $k\geqslant 3$),则当 $n=k$ 时,① 变为
$\left(3-\alpha_{1}\right)\left(p_{2}-\alpha_{2}+1\right) \ldots\left(p_{k-1}-\alpha_{k-1}+1\right)\left(p_{k}-\alpha_{k}+1\right)=2^{\alpha_1}p_{2}^{\alpha_2}\ldots p_{k-1}^{\alpha_{k-1}}p_{k}^{\alpha_k}
$ ②
若 $a_k \geqslant 2$,则考虑到
$\begin{aligned}{c}{0<p_{k}-\alpha_{k}+1<p_{k}}, \quad{0<p_{i}-\alpha_{i}+1 \leqslant p_{i}+1<p_{k}(1 \leqslant i \leqslant k-1)}\end{aligned}$
故 ② 的左边不能被 $p_k$ 整除,但此时 ② 的右边是 $p_k$ 的倍数,矛盾!
若 $\alpha_k =0$,则 ② 变为 $\left(3-\alpha_{1}\right)\left(p_{2}-\alpha_{2}+1\right) \ldots\left(p_{k-1}-\alpha_{k-1}+1\right)\left(p_{k}+1\right)=2^{\alpha_1}p_{2}^{\alpha_2}\ldots p_{k-1}^{\alpha_{k-1}}$
注意到 $p_2 , p_3 ,\ldots, p_k$ 为奇素数,因此一方面 $p_k +1$ 为偶数,
从而上式左边为偶数,而另一方面,右边 $p_{2}^{\alpha_2}\ldots p_{k-1}^{\alpha_{k-1}}$ 为奇数.从而必有 $\alpha_1 =1$.但此时 $3-\alpha_1 = 2$,故左边是 $4$ 的倍数,但右边不是 $4$ 的倍数,仍矛盾!
由上述讨论知,只能 $\alpha_k =1$,此时 ② 中 $p_k - \alpha_k +1=p_{k}^{\alpha_k}=p_k$,因而
$\left(3-\alpha_{1}\right)\left(p_{2}-\alpha_{2}+1\right) \ldots\left(p_{k-1}-\alpha_{k-1}+1\right)=2^{\alpha_1}p_{2}^{\alpha_2}\ldots p_{k-1}^{\alpha_{k-1}}$
由归纳假设知 $\alpha_1 =\alpha_2 =\ldots=\alpha_{k-1}=1$.从而 $\alpha_1 = \alpha_2 = \ldots = \alpha_{k-1} = \alpha_k =1$,
即当 $n=k$ 时结论成立.
由 ①,② 可断定 $(\alpha_1 , \alpha_2 , \ldots, \alpha_n )=(1,1,\ldots,1)$,故所求正整数为 $
x=2 p_{2} \ldots p_{n}=p_{1} p_{2} \cdots p_{n}
$.
答案
解析
备注