无穷正实数数列 $\{{x}_{n}\}$ 具有如下性质:${x}_{0}=1,{x}_{i+1}\leqslant {x}_{i},i=0,1,2,\cdots$
(1)求证::对于具有上述性质的任一数列,都存在一个 $n\geqslant 1$,使得 $\dfrac{x_{0}^{2}}{{{x}_{1}}}+\dfrac{x_{1}^{2}}{{{x}_{2}}}+\cdots +\dfrac{x_{n-1}^{2}}{{{x}_{n}}}\geqslant 3.999$;
(2)求出一个这样的数列,使对所有 $n\geqslant 1$,均有 $\dfrac{x_{0}^{2}}{{{x}_{1}}}+\dfrac{x_{1}^{2}}{{{x}_{2}}}+\cdots +\dfrac{x_{n-1}^{2}}{{{x}_{m}}}<4$.(苏联)
(1)求证::对于具有上述性质的任一数列,都存在一个 $n\geqslant 1$,使得 $\dfrac{x_{0}^{2}}{{{x}_{1}}}+\dfrac{x_{1}^{2}}{{{x}_{2}}}+\cdots +\dfrac{x_{n-1}^{2}}{{{x}_{n}}}\geqslant 3.999$;
(2)求出一个这样的数列,使对所有 $n\geqslant 1$,均有 $\dfrac{x_{0}^{2}}{{{x}_{1}}}+\dfrac{x_{1}^{2}}{{{x}_{2}}}+\cdots +\dfrac{x_{n-1}^{2}}{{{x}_{m}}}<4$.(苏联)
【难度】
【出处】
1982年第23届IMO试题
【标注】
【答案】
略
【解析】
(1)
$\begin{aligned}
&\dfrac{x_0^2}{x_1}+\dfrac{x_1^2}{x_2}+\cdots+\dfrac{x_{n-1}^2}{x_n}\\
&\geqslant\dfrac{x_0^2}{x_1}+\dfrac{x_1^2}{x_2}+\cdots+\left( \dfrac{x_{n-2}^2}{x_{n-1}}+\dfrac{x_{n-1}}{1}\right) \\
&\geqslant\geqslant\dfrac{x_0^2}{x_1}+\dfrac{x_1^2}{x_2}+\cdots+\left( \dfrac{x_{n-3}^2}{x_{n-2}}+2x_{n-2}\right) \\
&\geqslant\geqslant\dfrac{x_0^2}{x_1}+\dfrac{x_1^2}{x_2}+\cdots+\dfrac{x_{n-4}^2}{x_{n-3}}+2\sqrt{2}x_{n-3} \\
&\geqslant\cdots\cdots\\
&\geqslant\dfrac{x_0^2}{x_1}+2^{1+\frac{1}{2}+\cdots+\frac{1}{2^{n-3}}}x_1\\
&\geqslant 2^{1+\frac{1}{2}+\cdots+\frac{1}{2^{n-2}}}x_1\\
&\geqslant 2^{2-\frac{1}{2^{n-2}}}\rightarrow 4
\end{aligned}$
因此,当 $n$ 足够大时,就有 $\dfrac{x_0^2}{x_1}+\dfrac{x_1^2}{x_2}+\cdots+\dfrac{x_{n-1}^2}{x_n}\geqslant 3.999$.
(2)取无穷递缩等比数列 $\{x_n\}:x_n=\left(\dfrac{1}{2}\right)^n,n=0,1,2,\cdots$.则
$\begin{aligned}
&\dfrac{x_0^2}{x_1}+\dfrac{x_1^2}{x_2}+\cdots+\dfrac{x_{n-1}^2}{x_n}\\
&=2+1+\dfrac{1}{2}+\cdots+\left(\dfrac{1}{2} \right)^{n-2}\\
&=4- \left(\dfrac{1}{2} \right)^{n-2}<4
\end{aligned}$
$\begin{aligned}
&\dfrac{x_0^2}{x_1}+\dfrac{x_1^2}{x_2}+\cdots+\dfrac{x_{n-1}^2}{x_n}\\
&\geqslant\dfrac{x_0^2}{x_1}+\dfrac{x_1^2}{x_2}+\cdots+\left( \dfrac{x_{n-2}^2}{x_{n-1}}+\dfrac{x_{n-1}}{1}\right) \\
&\geqslant\geqslant\dfrac{x_0^2}{x_1}+\dfrac{x_1^2}{x_2}+\cdots+\left( \dfrac{x_{n-3}^2}{x_{n-2}}+2x_{n-2}\right) \\
&\geqslant\geqslant\dfrac{x_0^2}{x_1}+\dfrac{x_1^2}{x_2}+\cdots+\dfrac{x_{n-4}^2}{x_{n-3}}+2\sqrt{2}x_{n-3} \\
&\geqslant\cdots\cdots\\
&\geqslant\dfrac{x_0^2}{x_1}+2^{1+\frac{1}{2}+\cdots+\frac{1}{2^{n-3}}}x_1\\
&\geqslant 2^{1+\frac{1}{2}+\cdots+\frac{1}{2^{n-2}}}x_1\\
&\geqslant 2^{2-\frac{1}{2^{n-2}}}\rightarrow 4
\end{aligned}$
因此,当 $n$ 足够大时,就有 $\dfrac{x_0^2}{x_1}+\dfrac{x_1^2}{x_2}+\cdots+\dfrac{x_{n-1}^2}{x_n}\geqslant 3.999$.
(2)取无穷递缩等比数列 $\{x_n\}:x_n=\left(\dfrac{1}{2}\right)^n,n=0,1,2,\cdots$.则
$\begin{aligned}
&\dfrac{x_0^2}{x_1}+\dfrac{x_1^2}{x_2}+\cdots+\dfrac{x_{n-1}^2}{x_n}\\
&=2+1+\dfrac{1}{2}+\cdots+\left(\dfrac{1}{2} \right)^{n-2}\\
&=4- \left(\dfrac{1}{2} \right)^{n-2}<4
\end{aligned}$
答案
解析
备注