给定正实数 $a_1 , a_2 , \ldots , a_n$.证明:存在正实数 $x_1 , x_2 , \ldots, x_n$,满足 $\displaystyle \sum\limits_{i=1}^{n} x_{i}=1$,且对任何满足 $\displaystyle \sum\limits_{i=1}^{n} y_{i}=1$ 的正实数 $y_{1}, y_{2}, \ldots, y_{n}$,均有 $\displaystyle
\sum\limits_{i=1}^{n} \frac{a_{i} x_{i}}{x_{i}+y_{i}} \geqslant \frac{1}{2} \sum_{i=1}^{n} a_{i}
$.
\sum\limits_{i=1}^{n} \frac{a_{i} x_{i}}{x_{i}+y_{i}} \geqslant \frac{1}{2} \sum_{i=1}^{n} a_{i}
$.
【难度】
【出处】
2013第12届CGMO试题
【标注】
【答案】
略
【解析】
令 $\displaystyle x_{i}=\dfrac{a_{i}}{\sum\limits_{i=1}^{n} a_{i}}$,则 $\displaystyle \sum\limits_{i=1}^{n} x_{i}=1$.将 $x_i$ 代入不等式,得
$\displaystyle
\sum\limits_{i=1}^{n} \frac{a_{i} x_{i}}{x_{i}+y_{i}}=\sum_{i=1}^{n} a_{i} \sum_{i=1}^{n} \frac{x_{i}^{2}}{x_{i}+y_{i}}
$
对任何正实数 $y_{1}, y_{2}, \cdots, y_{n}$,$\displaystyle \sum\limits_{i=1}^{n} y_{i}=1$,由柯西不等式可知
$\begin{aligned} 2 \sum_{i=1}^{n} \frac{x_{i}^{2}}{x_{i}+y_{i}} &=\sum_{i=1}^{n}\left(x_{i}+y_{i}\right) \sum_{i=1}^{n} \frac{x_{i}^{2}}{x_{i}+y_{i}} \\ & \geqslant\left(\sum_{i=1}^{n} x_{i}\right)^{2}=1 \end{aligned}$
于是,
$\displaystyle
\sum\limits_{i=1}^{n} \frac{a_{i} x_{i}}{x_{i}+y_{i}}=\sum_{i=1}^{n} a_{i} \sum_{i=1}^{n} \frac{x_{i}^{2}}{x_{i}+y_{i}} \geqslant \frac{1}{2} \sum_{i=1}^{n} a_{i}
$
证毕.
$\displaystyle
\sum\limits_{i=1}^{n} \frac{a_{i} x_{i}}{x_{i}+y_{i}}=\sum_{i=1}^{n} a_{i} \sum_{i=1}^{n} \frac{x_{i}^{2}}{x_{i}+y_{i}}
$
对任何正实数 $y_{1}, y_{2}, \cdots, y_{n}$,$\displaystyle \sum\limits_{i=1}^{n} y_{i}=1$,由柯西不等式可知
$\begin{aligned} 2 \sum_{i=1}^{n} \frac{x_{i}^{2}}{x_{i}+y_{i}} &=\sum_{i=1}^{n}\left(x_{i}+y_{i}\right) \sum_{i=1}^{n} \frac{x_{i}^{2}}{x_{i}+y_{i}} \\ & \geqslant\left(\sum_{i=1}^{n} x_{i}\right)^{2}=1 \end{aligned}$
于是,
$\displaystyle
\sum\limits_{i=1}^{n} \frac{a_{i} x_{i}}{x_{i}+y_{i}}=\sum_{i=1}^{n} a_{i} \sum_{i=1}^{n} \frac{x_{i}^{2}}{x_{i}+y_{i}} \geqslant \frac{1}{2} \sum_{i=1}^{n} a_{i}
$
证毕.
答案
解析
备注