确定所有能使
$\begin{aligned}
& (x_{1}^{2}-{{x}_{3}}{{x}_{5}})(x_{2}^{2}-{{x}_{3}}{{x}_{5}})\leqslant 0 \\
& (x_{2}^{2}-{{x}_{4}}{{x}_{1}})(x_{3}^{2}-{{x}_{4}}{{x}_{1}})\leqslant 0 \\
& (x_{3}^{2}-{{x}_{5}}{{x}_{2}})(x_{4}^{2}-{{x}_{5}}{{x}_{2}})\leqslant 0 \\
& (x_{4}^{2}-{{x}_{1}}{{x}_{3}})(x_{5}^{2}-{{x}_{1}}{{x}_{3}})\leqslant 0 \\
& (x_{5}^{2}-{{x}_{2}}{{x}_{4}})(x_{1}^{2}-{{x}_{2}}{{x}_{4}})\leqslant 0 \\
\end{aligned}$
成立的所有解 $({x}_{1},{x}_{2},{x}_{3},{x}_{4},{x}_{5})$,其中 ${x}_{1},{x}_{2},{x}_{3},{x}_{4},{x}_{5}$ 都是正实数.(荷兰)
$\begin{aligned}
& (x_{1}^{2}-{{x}_{3}}{{x}_{5}})(x_{2}^{2}-{{x}_{3}}{{x}_{5}})\leqslant 0 \\
& (x_{2}^{2}-{{x}_{4}}{{x}_{1}})(x_{3}^{2}-{{x}_{4}}{{x}_{1}})\leqslant 0 \\
& (x_{3}^{2}-{{x}_{5}}{{x}_{2}})(x_{4}^{2}-{{x}_{5}}{{x}_{2}})\leqslant 0 \\
& (x_{4}^{2}-{{x}_{1}}{{x}_{3}})(x_{5}^{2}-{{x}_{1}}{{x}_{3}})\leqslant 0 \\
& (x_{5}^{2}-{{x}_{2}}{{x}_{4}})(x_{1}^{2}-{{x}_{2}}{{x}_{4}})\leqslant 0 \\
\end{aligned}$
成立的所有解 $({x}_{1},{x}_{2},{x}_{3},{x}_{4},{x}_{5})$,其中 ${x}_{1},{x}_{2},{x}_{3},{x}_{4},{x}_{5}$ 都是正实数.(荷兰)
【难度】
【出处】
1972年第14届IMO试题
【标注】
【答案】
略
【解析】
显然,$x_1=x_2=x_3=x_4=x_5$,$x_i$ 是正实数,$i=1,2,\cdots,5$ 是不等式的解.
另一方面,令 $x_{5+i}=x_i$,则不等式组可写为 $(x_i^2-x_{i+2}x_{i+4})(x_{i+1}^2-x_{i+2}x_{i+4})\leqslant 0,i=1,2,\cdots,5$.
把这 $5$ 个不等式相加,得
$\begin{aligned}
&\sum_{i=1}^5(x_i^2-x_{i+2}x_{i+4})(x_{i+1}^2-x_{i+2}x_{i+4})\\
&=\sum_{i=1}^5(x_i^2x_{i+1}^2-x_i^2x_{i+2}x_{i+4}-x_{i+1}^2x_{i+2}x_{i+4}+x_{i+2}^2x_{i+4}^2)\\
&=\dfrac{1}{2}\sum_{i=1}^5(x_i^2x_{i+4}^2+x_{i+1}^2x_{i+2}^2+x_i^2x_{i+2}^2+x_{i+1}^2x_{i+4}^2-2x_i^2x_{i+2}x_{i+4}-2x_{i+1}^2x_{i+2}x_{i+4})\\
&=\dfrac{1}{2}\sum_{i=1}^5[x_i^2(x_{i+2}^2-2x_{i+2}x_{i+4}+x_{i+4}^2)+x_{i+1}^2(x_{i+2}^2-2x_{i+2}x_{i+4}+x_{i+4}^2)]\\
&=\dfrac{1}{2}\sum_{i=1}^5(x_i^2+x_{i+1}^2)(x_{i+2}-x_{i+4})^2\\
&\leqslant 0
\end{aligned}$
因为 $(x_i^2+x^2_{i+1})(x_{i+2}-x_{i+4})^2\geqslant 0,i=1,2,\cdots,5$.故仅当 $x_1=x_3=x_5=x_2=x_4$ 时,上式成立.
所以,不等式组的解为 $x_1=x_2=x_3=x_4=x_5$.
另一方面,令 $x_{5+i}=x_i$,则不等式组可写为 $(x_i^2-x_{i+2}x_{i+4})(x_{i+1}^2-x_{i+2}x_{i+4})\leqslant 0,i=1,2,\cdots,5$.
把这 $5$ 个不等式相加,得
$\begin{aligned}
&\sum_{i=1}^5(x_i^2-x_{i+2}x_{i+4})(x_{i+1}^2-x_{i+2}x_{i+4})\\
&=\sum_{i=1}^5(x_i^2x_{i+1}^2-x_i^2x_{i+2}x_{i+4}-x_{i+1}^2x_{i+2}x_{i+4}+x_{i+2}^2x_{i+4}^2)\\
&=\dfrac{1}{2}\sum_{i=1}^5(x_i^2x_{i+4}^2+x_{i+1}^2x_{i+2}^2+x_i^2x_{i+2}^2+x_{i+1}^2x_{i+4}^2-2x_i^2x_{i+2}x_{i+4}-2x_{i+1}^2x_{i+2}x_{i+4})\\
&=\dfrac{1}{2}\sum_{i=1}^5[x_i^2(x_{i+2}^2-2x_{i+2}x_{i+4}+x_{i+4}^2)+x_{i+1}^2(x_{i+2}^2-2x_{i+2}x_{i+4}+x_{i+4}^2)]\\
&=\dfrac{1}{2}\sum_{i=1}^5(x_i^2+x_{i+1}^2)(x_{i+2}-x_{i+4})^2\\
&\leqslant 0
\end{aligned}$
因为 $(x_i^2+x^2_{i+1})(x_{i+2}-x_{i+4})^2\geqslant 0,i=1,2,\cdots,5$.故仅当 $x_1=x_3=x_5=x_2=x_4$ 时,上式成立.
所以,不等式组的解为 $x_1=x_2=x_3=x_4=x_5$.
答案
解析
备注