设 $\{{a}_{n}\}$ 是具有下列性质的实数列:
$1={a}_{0}\leqslant {a}_{1}\leqslant {a}_{2}\leqslant \cdots\leqslant {a}_{n}\leqslant \cdots$ ①
而 $\{{b}_{n}\}$ 是由下式定义的实数列:$\displaystyle {{b}_{n}}=\sum\limits_{k=1}^{n}\left(1-\dfrac{a_{k-1}}{a_k}\right)\frac{1}{\sqrt{a_k}}(n=1,2,3,\cdots)$.②
求证:($a$)$0\leqslant {b}_{n}<2(n=1,2,3,\cdots)$;
($b$)对满足 $0\leqslant c<2$ 的任意实数 $c$,总存在一个满足条件 ① 的数列 $\{a_n\}$,使得由 ② 导出的数列 $\{b_n\}$ 中,有无穷多个下标 $n$ 使 ${b}_{n}>c$.(瑞典)
$1={a}_{0}\leqslant {a}_{1}\leqslant {a}_{2}\leqslant \cdots\leqslant {a}_{n}\leqslant \cdots$ ①
而 $\{{b}_{n}\}$ 是由下式定义的实数列:$\displaystyle {{b}_{n}}=\sum\limits_{k=1}^{n}\left(1-\dfrac{a_{k-1}}{a_k}\right)\frac{1}{\sqrt{a_k}}(n=1,2,3,\cdots)$.②
求证:($a$)$0\leqslant {b}_{n}<2(n=1,2,3,\cdots)$;
($b$)对满足 $0\leqslant c<2$ 的任意实数 $c$,总存在一个满足条件 ① 的数列 $\{a_n\}$,使得由 ② 导出的数列 $\{b_n\}$ 中,有无穷多个下标 $n$ 使 ${b}_{n}>c$.(瑞典)
【难度】
【出处】
1970年第12届IMO试题
【标注】
【答案】
略
【解析】
($a$)易知 $\dfrac{a_{k-1}}{a_k}\leqslant 1$,于是 $b_n\geqslant 0$.
又有
$\begin{aligned}
\left(1-\dfrac{a_{k-1}}{a_k}\right)\dfrac{1}{\sqrt{a_k}}&=\left(1+\dfrac{\sqrt{a_{k-1}}}{\sqrt{a_k}}\right)\left(1-\dfrac{\sqrt{a_{k-1}}}{\sqrt{a_k}}\right)\dfrac{1}{\sqrt{a_k}}\\
&=\dfrac{\sqrt{a_{k-1}}}{\sqrt{a_k}}\left(1+\dfrac{\sqrt{a_{k-1}}}{\sqrt{a_k}}\right)\left(\dfrac{1}{\sqrt{a_{k-1}}}-\dfrac{1}{\sqrt{a_k}}\right)\\
&\leqslant 2\left(\dfrac{1}{\sqrt{a_{k-1}}}-\dfrac{1}{\sqrt{a_k}}\right)
\end{aligned}$
于是
$\begin{aligned}
b_n&=\sum_{k=1}^n\left(1-\dfrac{a_{k-1}}{a_k}\right)-\dfrac{1}{\sqrt{a_k}}\\
&\leqslant 2\sum_{k=1}^n\left(\dfrac{1}{\sqrt{a_{k-1}}}-\dfrac{1}{\sqrt{a_k}}\right)\\
&=2\left(\dfrac{1}{\sqrt{a_{0}}}-\dfrac{1}{\sqrt{a_n}}\right)\\
&<2
\end{aligned}$
($b$)选取一个适当的正数 $d\in(0,1)$,且有 $a_k=d^{-2k}$,于是 $\dfrac{1}{\sqrt{a_k}}=d^k$.且有
$\begin{aligned}
b_n&=\sum_{k=1}^n\left(1-\dfrac{a_{k-1}}{a_k}\right)-\dfrac{1}{\sqrt{a_k}}\\
&=\sum_{k=1}^n(1-d^2)d^k\\
&=d(1-d^2)\dfrac{1-d^n}{1-d}\\
&=d(1+d)(1-d^n)
\end{aligned}$
令对于任意整数 $c<2$,令 $d=\sqrt{\dfrac{c}{2}}$,易知有 $d(1+d)>c$.
又因 $0<d<1$,故有 $\lim\limits_{n\rightarrow \infty}(1-d^n)=1$,或当 $n$ 充分大时,必有 $1-d^n>\dfrac{2\sqrt{c}}{\sqrt{2}+\sqrt{c}}=\dfrac{c}{d(1+d)}$.因此有 $b_n>c$.($b$)得证.
又有
$\begin{aligned}
\left(1-\dfrac{a_{k-1}}{a_k}\right)\dfrac{1}{\sqrt{a_k}}&=\left(1+\dfrac{\sqrt{a_{k-1}}}{\sqrt{a_k}}\right)\left(1-\dfrac{\sqrt{a_{k-1}}}{\sqrt{a_k}}\right)\dfrac{1}{\sqrt{a_k}}\\
&=\dfrac{\sqrt{a_{k-1}}}{\sqrt{a_k}}\left(1+\dfrac{\sqrt{a_{k-1}}}{\sqrt{a_k}}\right)\left(\dfrac{1}{\sqrt{a_{k-1}}}-\dfrac{1}{\sqrt{a_k}}\right)\\
&\leqslant 2\left(\dfrac{1}{\sqrt{a_{k-1}}}-\dfrac{1}{\sqrt{a_k}}\right)
\end{aligned}$
于是
$\begin{aligned}
b_n&=\sum_{k=1}^n\left(1-\dfrac{a_{k-1}}{a_k}\right)-\dfrac{1}{\sqrt{a_k}}\\
&\leqslant 2\sum_{k=1}^n\left(\dfrac{1}{\sqrt{a_{k-1}}}-\dfrac{1}{\sqrt{a_k}}\right)\\
&=2\left(\dfrac{1}{\sqrt{a_{0}}}-\dfrac{1}{\sqrt{a_n}}\right)\\
&<2
\end{aligned}$
($b$)选取一个适当的正数 $d\in(0,1)$,且有 $a_k=d^{-2k}$,于是 $\dfrac{1}{\sqrt{a_k}}=d^k$.且有
$\begin{aligned}
b_n&=\sum_{k=1}^n\left(1-\dfrac{a_{k-1}}{a_k}\right)-\dfrac{1}{\sqrt{a_k}}\\
&=\sum_{k=1}^n(1-d^2)d^k\\
&=d(1-d^2)\dfrac{1-d^n}{1-d}\\
&=d(1+d)(1-d^n)
\end{aligned}$
令对于任意整数 $c<2$,令 $d=\sqrt{\dfrac{c}{2}}$,易知有 $d(1+d)>c$.
又因 $0<d<1$,故有 $\lim\limits_{n\rightarrow \infty}(1-d^n)=1$,或当 $n$ 充分大时,必有 $1-d^n>\dfrac{2\sqrt{c}}{\sqrt{2}+\sqrt{c}}=\dfrac{c}{d(1+d)}$.因此有 $b_n>c$.($b$)得证.
答案
解析
备注